In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging.
View Article and Find Full Text PDFElectrical and chemical synapses provide two distinct modes of direct communication between neurons, and the embryonic development of the two is typically not simultaneous. Instead, in both vertebrates and invertebrates, gap junction-based electrical synapses arise before chemical synaptogenesis, and the early circuits composed of gap junction-based electrical synapses resemble those produced later by chemical synapses. This developmental sequence from electrical to chemical synapses has led to the hypothesis that, in developing neuronal circuits, electrical junctions are necessary forerunners of chemical synapses.
View Article and Find Full Text PDFThe present study evaluates the central circuits that are synaptically engaged by very small subsets of the total population of geniculate ganglion cells to test the hypothesis that taste ganglion cells are heterogeneous in terms of their central connections. We used transsynaptic anterograde pseudorabies virus labeling of fungiform taste papillae to infect single or small numbers of geniculate ganglion cells, together with the central neurons with which they connect, to define differential patterns of synaptically linked neurons in the taste pathway. Labeled brain cells were localized within known gustatory regions, including the rostral central subdivision (RC) of the nucleus of the solitary tract (NST), the principal site where geniculate axons synapse, and the site containing most of the cells that project to the parabrachial nucleus (PBN) of the pons.
View Article and Find Full Text PDF