Publications by authors named "Krista Suenens"

Subcutaneous implants of device-encapsulated stem cell-derived pancreatic endoderm (PE) can establish a functional beta cell mass (FBM) with metabolic control in immune-compromised mice. In a study with human-induced pluripotent stem cell-PE, this outcome was favored by a preformed pouch which allowed lesion-free insertion of devices in a pre-vascularized site. This was not reproduced in nude rats, known to exhibit a higher innate reactivity than mice and therefore relevant as preclinical model: a dense fibrotic capsule formed around subcutis (SC) implants with virtually no FBM formation.

View Article and Find Full Text PDF

Intraportal (IP) islet cell transplants can restore metabolic control in type 1 diabetes patients, but limitations raise the need for establishing a functional beta cell mass (FBM) in a confined extrahepatic site. This study reports on function and composition of omental (OM) implants after placement of islet cell grafts with similar beta cell mass as in our IP-protocol (2-5.10 beta cells/kg body weight) on a scaffold.

View Article and Find Full Text PDF

Detection of amyloid in intraportal islet implants of type 1 diabetes patients has been proposed as cause in their functional decline. The present study uses cultured adult human islets devoid of amyloid to examine conditions of its formation. After intraportal injection in patients, amyloid deposits <15 µm diameter were identified in 5%-12% of beta cell containing aggregates, 3-76 months posttransplant.

View Article and Find Full Text PDF

Device-encapsulated human stem cell-derived pancreatic endoderm (PE) can generate functional β-cell implants in the subcutis of mice, which has led to the start of clinical studies in type 1 diabetes. Assessment of the formed functional β-cell mass (FBM) and its correlation with in vivo metabolic markers can guide clinical translation. We recently reported ex vivo characteristics of device-encapsulated human embryonic stem cell-derived (hES)-PE implants in mice that had established a metabolically adequate FBM during 50-week follow-up.

View Article and Find Full Text PDF

Alginate (Alg)-encapsulated porcine islet cell grafts are developed to overcome limitations of human islet transplantation. They can generate functional implants in animals when prepared from fetal, perinatal, and adult pancreases. Implants have not yet been examined for efficacy to establish sustained, metabolically adequate functional β-cell mass (FBM) in comparison with human islet cells.

View Article and Find Full Text PDF

Human stem cells represent a potential source for implants that replace the depleted functional beta cell mass (FBM) in diabetes patients. Human embryonic stem cell-derived pancreatic endoderm (hES-PE) can generate implants with glucose-responsive beta cells capable of reducing hyperglycemia in mice. This study with device-encapsulated hES-PE (4 × 10 cells/mouse) determines the biologic characteristics at which implants establish metabolic control during a 50-week follow-up.

View Article and Find Full Text PDF

β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated.

View Article and Find Full Text PDF

We recently reported that human blood outgrowth endothelial cells (BOEC) are supportive to reverse hyperglycemia in marginal islet mass-transplanted diabetic mice. In this report, we investigated whether the observed effect was evoked by islet packing in a blood clot prior to transplantation or could be mimicked by another method of islet/cell delivery. A marginal islet mass with or without BOEC was grafted underneath the kidney capsule of diabetic recipient mice via a (blood clot-independent) tubing system and compared with previous islet packing in a blood clot.

View Article and Find Full Text PDF

Background: Rapid revascularization of islet cell implants is important for engraftment and subsequent survival and function. Development of an adequate vascular network is expected to allow adaptive growth of the β-cell mass. The present study compares omentum and kidney capsule as sites for growth and differentiation of immature β-cell grafts.

View Article and Find Full Text PDF

The development of islet cell transplantation as a cure for diabetes is limited by the shortage of human donor organs. Moreover, currently used grafts exhibit a marginal beta-cell mass with an apparently low capacity for beta-cell renewal and growth. Although duct-associated nonendocrine cells have often been suggested as a potential source for beta-cell production, recent work in mice has demonstrated the role of beta-cells in postnatal growth of the pancreatic beta-cell mass.

View Article and Find Full Text PDF