In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression.
View Article and Find Full Text PDFCatecholamines and their metabolites act as neurotransmitters in the brain and are important for nervous system function. In the current work, a highly selective and sensitive UPLC-MS/MS assay was developed for quantitation of six catecholamines and their metabolites, including dopamine, norepinephrine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindolacetic acid from rat and mouse striatum as pharmacodynamic biomarkers to support neuroscience and pharmaceutical research. A fit-for-purpose strategy for method development, assay qualification and study support were adopted for this assay.
View Article and Find Full Text PDFThe microglial reaction is a hallmark of neurodegenerative conditions, and elements thereof may exert differential effects on disease progression, either worsening or ameliorating severity. In amyotrophic lateral sclerosis (ALS), a syndrome characterized by cytoplasmic aggregation of TDP-43 protein and atrophy of motor neurons in the cortex and spinal cord, the transcriptomic signatures of microglia during disease progression are incompletely understood. Here, we performed longitudinal RNAseq analysis of cortical and spinal cord microglia from rNLS8 mice, in which doxycycline-regulatable expression of human TDP-43 (hTDP-43) in the cytoplasm of neurons recapitulates many features of ALS.
View Article and Find Full Text PDFBackground And Purpose: Endocannabinoids are critically involved in brain reward functions, mediated by activation of CB receptors, reflecting their high density in the brain. However, the recent discovery of CB receptors in the brain, particularly in the midbrain dopamine neurons, has challenged this view and inspired us to re-examine the roles of both CB and CB receptors in the effects of cannabis.
Experimental Approach: In the present study, we used the electrical intracranial self-stimulation paradigm to evaluate the effects of various cannabinoid drugs on brain reward in laboratory rats and the roles of CB and CB receptors activation in brain reward function(s).
Therapeutic strategies are needed for the treatment of amyotrophic lateral sclerosis (ALS). One potential target is matrix metalloproteinase-9 (MMP-9), which is expressed only by fast motor neurons (MNs) that are selectively vulnerable to various ALS-relevant triggers. Previous studies have shown that reduction of MMP-9 function delayed motor dysfunction in a mouse model of familial ALS.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease selectively targeting motor neurons in the brain and spinal cord. The reasons for differential motor neuron susceptibility remain elusive. We developed a stem cell-based motor neuron assay to study cell-autonomous mechanisms causing motor neuron degeneration, with implications for ALS.
View Article and Find Full Text PDFThough motor neurons selectively degenerate in amyotrophic lateral sclerosis, other cell types are likely involved in this disease. We recently generated rNLS8 mice in which human TDP-43 (hTDP-43) pathology could be reversibly induced in neurons and expected that microglia would contribute to neurodegeneration. However, only subtle microglial changes were detected during disease in the spinal cord, despite progressive motor neuron loss; microglia still reacted to inflammatory triggers in these mice.
View Article and Find Full Text PDFIn order to treat progressive paralysis in ALS patients, it is critical to develop a mouse that closely models human ALS in both pathology and also in the timing of these events. We have recently generated new TDP-43 bigenic mice (called rNLS8) with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (hTDP-43∆NLS) under the control of the NEFH promoter. Our previous studies characterized the pathology and disease course in young rNLS8 mice following induction of neuronal hTDP-43ΔNLS.
View Article and Find Full Text PDFUnlabelled: Motor neurons (MNs) are the neuronal class that is principally affected in amyotrophic lateral sclerosis (ALS), but it is widely known that individual motor pools do not succumb to degeneration simultaneously. Because >90% of ALS patients have an accumulation of cytoplasmic TDP-43 aggregates in postmortem brain and spinal cord (SC), it has been suggested that these inclusions in a given population may trigger its death. We investigated seven MN pools in our new inducible rNLS8 transgenic (Tg) mouse model of TDP-43 proteinopathy and found striking differences in MN responses to TDP-43 pathology.
View Article and Find Full Text PDFAccumulation of phosphorylated cytoplasmic TDP-43 inclusions accompanied by loss of normal nuclear TDP-43 in neurons and glia of the brain and spinal cord are the molecular hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the role of cytoplasmic TDP-43 in the pathogenesis of these neurodegenerative TDP-43 proteinopathies remains unclear, due in part to a lack of valid mouse models. We therefore generated new mice with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (∆NLS) under the control of the neurofilament heavy chain promoter.
View Article and Find Full Text PDFAngiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages.
View Article and Find Full Text PDFSelective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons.
View Article and Find Full Text PDFThe success of methadone in treating opiate addiction has suggested that long-acting agonist therapies may be similarly useful for treating cocaine addiction. Here, we examined this hypothesis, using the slow-onset long-acting monoamine reuptake inhibitor 31,345, a trans-aminotetralin analog, in a variety of addiction-related animal models, and compared it with methadone's effects on heroin's actions in the same animal models. Systemic administration of 31,345 produced long-lasting enhancement of electrical brain-stimulation reward (BSR) and extracellular nucleus accumbens (NAc) dopamine (DA).
View Article and Find Full Text PDFOur previous studies have shown that the selective dopamine D(3) receptor antagonists SB-277011A or NGB 2904 significantly attenuate cocaine self-administration under a progressive-ratio reinforcement schedule and cocaine-, methamphetamine- or nicotine-enhanced brain stimulation reward. However, the poor bioavailability of SB-277011A has limited its potential use in humans. In the present study, we investigated the effects of the novel D(3) receptor antagonist PG01037 on methamphetamine self-administration, methamphetamine-associated cue-induced reinstatement of drug seeking and methamphetamine-enhanced brain stimulation reward.
View Article and Find Full Text PDFPharmacological activation of group II metabotropic glutamate (mGlu2 and mGlu3) receptors inhibits reward-seeking behavior and/or rewarding efficacy induced by drugs (cocaine, nicotine) or natural rewards (food, sucrose). In the present study, we investigated whether elevation of brain N-acetylaspartylglutamate (NAAG), an endogenous group II mGlu receptor agonist, by the NAAG peptidase inhibitor 2-PMPA attenuates cocaine's rewarding effects, as assessed by intravenous cocaine self-administration and intracranial electrical brain-stimulation reward (BSR) in rats. Systemic administration of 2-PMPA (10, 30, 100 mg/kg, i.
View Article and Find Full Text PDFThe opiate-receptor antagonist naloxone was administered to rats after passive-avoidance training either alone or in combination with forced-swim stress. A retention test revealed that while naloxone enhanced retention when administered alone, it impaired retention when administered in combination with forced-swim stress. The findings provide evidence for a "protective" endogenous opioid-based system that, when not blocked pharmacologically, limits enhancement or impairment of retention under conditions of mild and intense stress, respectively.
View Article and Find Full Text PDFActa Pharmacol Sin
June 2009
Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence.
View Article and Find Full Text PDFVarenicline, a partial alpha4beta2 and full alpha7 nicotinic receptor agonist, has been shown to inhibit nicotine self-administration and nicotine-induced increases in extracellular dopamine in the nucleus accumbens. In the present study, we investigated whether varenicline inhibits nicotine-enhanced electrical brain-stimulation reward (BSR), and if so, which receptor subtypes are involved. Systemic administration of nicotine (0.
View Article and Find Full Text PDFThe metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.
View Article and Find Full Text PDFWe have previously reported that selective dopamine (DA) D3 receptor antagonists are effective in a number of animal models of drug addiction, but not in intravenous drug self-administration, suggesting a limited ability to modify drug reward. In the present study, we evaluated the actions ofS33138, a novel partially selective D3 receptor antagonist, in animal models relevant to drug addiction. S33138, at doses of 0.
View Article and Find Full Text PDFRationale: We have previously reported that selective antagonism of brain D3 receptors by SB-277011A or NGB 2904 significantly attenuates cocaine- or nicotine-enhanced brain stimulation reward (BSR).
Objective: In the present study, we investigated whether the selective D3 receptor antagonists SB-277011A and NGB 2904 and the putative partial D3 agonist BP-897 similarly reduce methamphetamine (METH)-enhanced BSR.
Materials And Methods: Rats were trained to respond for rewarding electrical self-stimulation of the medial forebrain bundle.
It was recently reported that levo-tetrahydropalmatine (l-THP), a dopamine (DA) D1 and D2 receptor antagonist purified from the Chinese herb Stephanie, appears to be effective in attenuating cocaine self-administration, cocaine-triggered reinstatement and cocaine-induced conditioned place preference in preclinical animal models. The present study was designed to contrast l-THP's effects on cocaine self-administration under fixed-ratio (FR) and progressive-ratio (PR) reinforcement, and to study l-THP's effects on cocaine-enhanced brain stimulation reward (BSR). Systemic administration of l-THP produced dose-dependent, biphasic effects, i.
View Article and Find Full Text PDFPrevious studies suggest that cannabinoid CB1 receptors do not appear to be involved in cocaine's rewarding effects, as assessed by the use of SR141716A, a prototypic CB1 receptor antagonist and CB1-knockout mice. In the present study, we found that blockade of CB1 receptors by AM 251 (1-10 mg/kg), a novel CB1 receptor antagonist, dose-dependently lowered (by 30-70%) the break point for cocaine self-administration under a progressive-ratio (PR) reinforcement schedule in rats. The same doses of SR141716 (freebase form) maximally lowered the break point by 35%, which did not reach statistical significance.
View Article and Find Full Text PDF