Publications by authors named "Krista R Fruehauf"

Plant-based food proteins are a promising choice for the preparation of nanoparticles (NPs) due to their high digestibility, low cost, and ability to interact with various compounds and nutrients. Moreover, nanoencapsulation offers a potential solution for protecting nutrients during processing and enhancing their bioavailability. This study aimed to develop and evaluate nanoparticles (NPs) based on legumin/vicilin (LV) proteins extracted from fava beans, with the goal of encapsulating and delivering a model nutraceutical compound, folic acid (FA).

View Article and Find Full Text PDF

We describe an approach for the discovery of protein affinity reagents (PARs). Abiotic synthetic hydrogel copolymers can be "tuned" for selective protein capture by the type and ratios of functional monomers included in their polymerization and by the polymerization conditions (i.e.

View Article and Find Full Text PDF

We report a metal free synthetic hydrogel copolymer with affinity and selectivity for His6-tagged peptides and proteins. Small libraries of copolymers incorporating charged and hydrophobic functional groups were screened by an iterative process for His6 peptide affinity. The monomer selection was guided by interactions found in the crystal structure of an anti-His tag antibody-His6 peptide antigen complex.

View Article and Find Full Text PDF

Stimuli-responsive polymers are an efficient means of targeted therapy. Compared to conventional agents, they increase bioavailability and efficacy. In particular, polymer hydrogel nanoparticles (NPs) can be designed to respond when exposed to a specific environmental stimulus such as pH or temperature.

View Article and Find Full Text PDF