Awareness of the need for surveillance of antimicrobial resistance (AMR) in water environments is growing, but there is uncertainty regarding appropriate monitoring targets. Adapting culture-based fecal indicator monitoring to include antibiotics in the media provides a potentially low-tech and accessible option, while quantitative polymerase chain reaction (qPCR) targeting key genes of interest provides a broad, quantitative measure across the microbial community. The purpose of this study was to compare findings obtained from the culture of cefotaxime-resistant (cefR) with two qPCR methods for quantification of antibiotic resistance genes across wastewater, recycled water, and surface waters.
View Article and Find Full Text PDFPurpose Of Review: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g.
View Article and Find Full Text PDFAntibiotic resistance is a major 21 century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions.
View Article and Find Full Text PDFThe emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2020
Ambient recreational waters can act as both recipients and natural reservoirs for antimicrobial resistant (AMR) bacteria and antimicrobial resistant genes (ARGs), where they may persist and replicate. Contact with AMR bacteria and ARGs potentially puts recreators at risk, which can thus decrease their ability to fight infections. A variety of point and nonpoint sources, including contaminated wastewater effluents, runoff from animal feeding operations, and sewer overflow events, can contribute to environmental loading of AMR bacteria and ARGs.
View Article and Find Full Text PDF