Publications by authors named "Krista L Stilger"

Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma.

View Article and Find Full Text PDF

Mitochondria distribution in cells controls cellular physiology in health and disease. Here we describe the mitochondrial morphology and positioning found in the different stages of the lytic cycle of the eukaryotic single-cell parasite Toxoplasma gondii. The lytic cycle, driven by the tachyzoite life stage, is responsible for acute toxoplasmosis.

View Article and Find Full Text PDF

A key contributor to HIV-1 genetic variation is reverse transcriptase errors. Some mutations result because reverse transcriptase (RT) lacks 3' to 5' proofreading exonuclease and can extend mismatches. However, RT also excises terminal nucleotides to a limited extent, and this activity contributes to AZT resistance.

View Article and Find Full Text PDF

Lysine acetylation has recently emerged as an important, widespread post-translational modification occurring on proteins that reside in multiple cellular compartments, including the mitochondria. However, no lysine acetyltransferase (KAT) has been definitively localized to this organelle to date. Here we describe the identification of an unusual homologue of Elp3 in early-branching protozoa in the phylum Apicomplexa.

View Article and Find Full Text PDF

In the past 10 years, the field of parasitology has witnessed an explosion of studies investigating gene regulation. In this review, we will describe recent advances largely stemming from the study of Toxoplasma gondii, a significant opportunistic pathogen and useful model for other apicomplexan protozoa. Surprising findings have emerged, including the discovery of a wealth of epigenetic machinery in these primitive eukaryotes, unusual histone variants, and a battery of plant-like transcription factors.

View Article and Find Full Text PDF