Publications by authors named "Krista K Bartz"

Mercury (Hg) is a widespread element and persistent pollutant, harmful to fish, wildlife, and humans in its organic, methylated form. The risk of Hg contamination is driven by factors that regulate Hg loading, methylation, bioaccumulation, and biomagnification. In remote locations, with infrequent access and limited data, understanding the relative importance of these factors can pose a challenge.

View Article and Find Full Text PDF

Lake trout (), collected from 13 remote lakes located in southwestern Alaska, were analyzed for carbon, nitrogen, and mercury (Hg) stable isotope values to assess the importance of migrating oceanic salmon, volcanic activity, and atmospheric deposition to fish Hg burden. Methylmercury (MeHg) bioaccumulation in phytoplankton (5.0 - 6.

View Article and Find Full Text PDF

Management or conservation targets based on demographic rates should be evaluated within the context of expected population dynamics of the species of interest. Wild populations can experience stable, cyclical, or complex dynamics, therefore undisturbed populations can provide background needed to evaluate programmatic success. Many raptor species have recovered from large declines caused by environmental contaminants, making them strong candidates for ongoing efforts to understand population dynamics and ecosystem processes in response to human-caused stressors.

View Article and Find Full Text PDF

For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest.

View Article and Find Full Text PDF

The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.

View Article and Find Full Text PDF

Dams designed for hydropower and other purposes alter the environments of many economically important fishes, including Chinook salmon (Oncorhynchus tshawytscha). We estimated that dams on the Rogue River, the Willamette River, the Cowlitz River, and Fall Creek decreased water temperatures during summer and increased water temperatures during fall and winter. These thermal changes undoubtedly impact the behavior, physiology, and life histories of Chinook salmon.

View Article and Find Full Text PDF

Chinook salmon (Oncorhynchus tshawytscha) have declined dramatically across the Pacific Northwest because of multiple human impacts colloquially characterized as the four "H's": habitat degradation, harvest, hydroelectric and other dams, and hatchery production. We use this conceptual framework to quantify the relative importance of major threats to the current status of 201 Chinook populations. Current status is characterized by two demographic indices: population density and trend.

View Article and Find Full Text PDF

Throughout the world, efforts are under way to restore watersheds, but restoration planning rarely accounts for future climate change. Using a series of linked models of climate, land cover, hydrology, and salmon population dynamics, we investigated the impacts of climate change on the effectiveness of proposed habitat restoration efforts designed to recover depleted Chinook salmon populations in a Pacific Northwest river basin. Model results indicate a large negative impact of climate change on freshwater salmon habitat.

View Article and Find Full Text PDF