Solar energy is an environmentally friendly and inexhaustible natural resource. It can be converted into thermal energy by using concentrated solar power (CSP) methods. One of the key components of CSP is a solar absorber, which absorbs concentrated solar radiation and converts it into heat.
View Article and Find Full Text PDFSeparation and enrichment of bio-nanoparticles from cell suspensions and blood are critical steps in many chemical and biomedical practices. We demonstrate here the design and fabrication of a microfluidic immunochromatographic device incorporating regular and multiscale monolithic structures to capture viruses from blood. The device contains micropatterned arrays of macroporous materials to perform size-exclusion and affinity chromatography in a simple flow-through process.
View Article and Find Full Text PDFThere is a need to develop inexpensive, portable and easy-to-use devices for viral sample processing for resource-limited settings. Here we offer a solution to efficient virus capture by incorporating macroporous materials with regular structures into microfluidic devices for affinity chromatography. Two-dimensional simulations were first conducted to investigate the effects of two structures, a nanopost array and a spherical pore network, on nanoparticle capture.
View Article and Find Full Text PDFNanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking.
View Article and Find Full Text PDF