The search for exotic new topological states of matter in widely accessible materials, for which the manufacturing process is mastered, is one of the major challenges of the current topological physics. Here we predict higher order topological insulator state in quantum wells based on the most common semiconducting materials. By successively deriving the bulk and boundary Hamiltonians, we theoretically prove the existence of topological corner states due to cubic symmetry in quantum wells with double band inversion.
View Article and Find Full Text PDFWe address the problem of hybridization between topological surface states and a non-topological flat bulk band. Our model, being a mixture of three-dimensional Bernevig-Hughes-Zhang and two-dimensional pseudospin-1 Hamiltonian, allows explicit treatment of the topological surface state evolution by continuously changing the hybridization between the inverted bands and an additional 'parasitic' flat band in the bulk. We show that the hybridization with a flat band lying below the edge of the conduction band converts the initial Dirac-like surface states into a branch below and one above the flat band.
View Article and Find Full Text PDFThe search for room temperature quantum spin Hall insulators (QSHIs) based on widely available materials and a controlled manufacturing process is one of the major challenges of today's topological physics. We propose a new class of semiconductor systems based on multilayer broken-gap quantum wells, in which the QSHI gap reaches 60 meV and remains insensitive to temperature. Depending on their layer thicknesses and geometry, these novel structures also host a graphene-like phase and a bilayer graphene analog.
View Article and Find Full Text PDFWe report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field B_{c} is a characteristic of inverted band structure in the quantum well.
View Article and Find Full Text PDFIt has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature.
View Article and Find Full Text PDFHgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the "single-valley" analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers separated by CdTe barrier.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2013
We report a theoretical study on magnetoplasmon excitations in a perpendicular magnetic field in n-type narrow-gap quantum wells (QWs). Using the Hartree-Fock approximation based on the 8 × 8 k · p Hamiltonian, we calculate magnetoplasmon dispersions in symmetric and asymmetric InAs/AlSb QWs for the case of integer-filled Landau levels. We demonstrate a significant dependence of the shape of magnetoplasmon dispersions on the 2D electron concentration, as well as a nonlinear dependence of the magnetoplasmon energy on the wavevector at small values of k.
View Article and Find Full Text PDFWe report a theoretical study of the energies of cyclotron resonance (CR) and electron spin resonance (ESR) for fractional quantum Hall states (FQHS) in n-type narrow-gap quantum well (QW) heterostructures. Using the generalized single-mode approximation (GSMA) based on the 8-band k·p Hamiltonian, we calculate the many-body corrections to the CR and ESR energies for FQHS, providing theoretical evidence of the Kohn and Larmor theorem violation in narrow-gap QWs. We predict the correlation-induced reduction of CR energies and the correlation-induced enhancement of ESR energies as compared with the values obtained within the Hartree-Fock approximation.
View Article and Find Full Text PDFWe report a theoretical study of the exchange interaction effects in the electron spin resonance (ESR) in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation, based on the eight-band k⋅p Hamiltonian, the many-body correction to the ESR energy is found to be nonzero, providing theoretical evidence of Larmor theorem violation in symmetric narrow-gap QWs. We predict the exchange enhancement of the ESR g-factor and its divergence in low magnetic fields.
View Article and Find Full Text PDFUsing the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2011
We report on the study of the exchange enhancement of the g-factor in the two-dimensional (2D) electron gas in n-type narrow-gap semiconductor heterostructures. Our approach is based on the eight-band k⋅p Hamiltonian and takes into account the band nonparabolicity, the lattice deformation, the spin-orbit coupling and the Landau level broadening in the δ-correlated random potential model. Using the 'screened' Hartree-Fock approximation we demonstrate that the exchange g-factor enhancement not only shows maxima at odd values of Landau level filling factors but, due to the conduction band nonparabolicity, persists at even filling factor values as well.
View Article and Find Full Text PDF