Publications by authors named "Krishnendu Pramanik"

Unlabelled: Phosphorus (P) is the key to several structural molecules and catalyzes numerous biochemical reactions in plant body besides its involvement in energy transfer. Any deficit in P availability is likely to result in reduced RNA and protein content, inhibiting crop growth and development. Thus, availability of soil P is extremely crucial for plant growth especially in acid soils of India, where most of the fraction is bound to solid phase rendering their availability.

View Article and Find Full Text PDF

Lead (Pb) is the 2 known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings.

View Article and Find Full Text PDF

Degradation, detoxification, or removal of the omnipresent polycyclic aromatic hydrocarbons (PAHs) from the ecosphere as well as their prevention from entering into food chain has never appeared simple. In this context, cost-effective, eco-friendly, and sustainable solutions like microbe-mediated strategies have been adopted worldwide. With this connection, measures have been taken by multifarious modes of microbial remedial strategies, i.

View Article and Find Full Text PDF

The potential of plant growth-promoting endophytic fungi (PGPEF) in mycoremediation has received notable attention in recent years. Unlike other root-colonizing microorganisms, PGPEF colonization under Cadmium (Cd) stress is a less-revealed phenomenon. Among eighteen fungal isolates from the leaves of Eupatorium triplinerve, twelve were found as the species of Colletotrichum and remaining six belong to Fusarium based on phenotypic characterization.

View Article and Find Full Text PDF

A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks.

View Article and Find Full Text PDF

Background: The primary amino acid sequence of a protein is a translated version from its gene sequence which carries important messages and information concealed therein. The present study unveils the structure-function and evolutionary aspects of 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) proteins of fungal origin. ACCD, an important plant growth-promoting microbial enzyme, is less frequent in fungi compared to bacteria.

View Article and Find Full Text PDF

In agricultural soil, cadmium (Cd) pollution compromises soil health, reduces crop yield, and produces Cd-contaminated crops. Bio-based approaches are necessary as an eco-friendly and sustainable solution to mitigate Cd-polluted areas. A heavy metal-resistant rhizobacterial strain (AS10) has been isolated from a heavy metal-defiled rice field.

View Article and Find Full Text PDF

A solar-driven electrochemical column (EC) was developed for cathodic sequestration remediation of heavy metals (HMs) and anodic electroporative inactivation of pathogenic bacteria (PB) with continuous flow capacity for sustainable production of drinking water from wastewater. The method produces "revitalized drinking water" by keeping its natural mineral nutrients boosted with dissolved oxygen. The EC was constructed with graphene oxide (GO) synthesized via photoassisted electrochemical oxidation of CF (PEGO-CF) as the cathode and phytoreduced GO (RPEGO-CF) as the anode.

View Article and Find Full Text PDF

The toxic metalloid arsenic (As), is a major pollutant of soil and water, imposing severe health concerns on human lives. It enters the food chain mainly through As-contaminated crops. The uptake, translocation and accumulation of As in plant tissue are often controlled by certain soil-inhabiting microbial communities.

View Article and Find Full Text PDF

Heavy metal and metalloid toxicity in agricultural land needs special attention for crop production essential to feed increasing population globally. Plant growth-promoting rhizobacteria (PGPR) are native biological agents that have tremendous potential to augment crop production in contaminated fields. This study involves selection and identification (through 16S rRNA gene sequence and FAME analysis) of a potent Pseudomonas sp.

View Article and Find Full Text PDF

Population detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture.

View Article and Find Full Text PDF

The plant rhizosphere interfaces an array of microbiomes related to plant growth and development. Cultivar-specific soil microbial communities with respect to their taxonomic structure and specific function have not been investigated explicitly in improving the adaptation of lentil cultivars under rice-fallow ecology. The present study was carried out to decipher the rhizosphere microbiome assembly of two lentil cultivars under rice-fallow ecology for discerning the diversity of microbial communities and for predicting the function of microbiome genes related to nitrogen (N) and phosphorus (P) cycling processes deploying high-throughput whole (meta) genome sequencing.

View Article and Find Full Text PDF

Photozymes or artificial photosynthesis based on alternative natural enzymes is vital for the sustainable development of next-generation healthcare, energy, and materials science. Herein, we report resorcinol-formaldehyde (RF) resins as a solar-driven metal-free bifunctional glucose oxidase-peroxidase stand-alone photozyme for the colorimetric dual detection of hydrogen peroxide and glucose. The π-bond conjugated benzenoid-ortho/para quinoid RF polymers are efficient for glucose oxidation and hydrogen peroxide reduction with concurrent 3,3',5,5'-tetramethylbenzidine oxidation under natural sunlight.

View Article and Find Full Text PDF

Hybrid nanomaterials-based artificial enzymes with numerous utilities are necessary to develop future bionic devices in mimicking physiological processes. This paper demonstrates bifunctional enzyme mimicking roles of a metal-free nanozyme hybrid of chemically modified graphitic carbon nitride (MGCN), chitin and acetic acid (AcOH). The MGCN exhibited glucose oxidase-mimicking activity and chitin-AcOH mirrored peroxidase.

View Article and Find Full Text PDF

Cadmium (Cd), as a hazardous pollutant present in the environment as well as within biological samples, needs to be detected and remediated at the same time. Although many types of Cd detection techniques have been developed globally, there is no evidence to analyse Cd ion electrochemically using graphene-based electrode for bioaccumulation of Cd in bacteria and plants. The present study describes the fabrication and characterization of a three-dimensional reduced graphene oxide-based electrode to detect bioaccumulation of Cd within the bacterial cell and rice tissues applying differential pulse voltammetry (DPV) technique.

View Article and Find Full Text PDF

Germin-like proteins (GLPs) are involved in biotic and abiotic stress tolerance in different plant species. Rice (Oryza sativa L.) genome contains about 40 GLP family member proteins in nine chromosomes.

View Article and Find Full Text PDF

Phosphorus is a primary macronutrient required for normal plant health, metabolism and survival. It is present in soil in compound insoluble form for which plant cannot uptake it directly from the soil. Some phosphate solubilizing bacteria possess some important enzymes for phosphate solubilization as well as mineralization.

View Article and Find Full Text PDF

Increasing soil salinity is often associated with accelerated ethylene production in plants, leading to overall growth reduction. The salt-tolerant 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing PGPR may alleviate salt stress by reducing the production of stress ethylene. In this study, a salt-tolerant ACC deaminase-producing strain named P50 was isolated from a coastal rice field in Odisha, India, which enhanced the growth of rice seedlings under salt stress.

View Article and Find Full Text PDF

This paper reports a simple, facile and rapid preparation of 3‑mercapto‑propanoic acid (MPA) modified cellulose filter paper (MPA-Cell paper) for arsenate removal from drinking water. The MPA was covalently grafted to the cellulose filter paper (Cell) by esterification process through the formation of O‑acylisourea intermediate and characterized by the FTIR, SEM, EDS and XPS analyses. The arsenate adsorption efficiency was studied for batch and semi-continuous systems while exploring the adsorption kinetics, isotherm and the effect of pH for the former.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a strain of arsenic-resistant plant growth promoting rhizobacteria (PGPR) named AS6, isolated from arsenic-contaminated fields in West Bengal, India.
  • This strain, identified as Bacillus aryabhattai, shows significant resistance to arsenic, effectively reducing arsenic toxicity and promoting plant growth through various beneficial traits.
  • The findings suggest that AS6 can enhance the growth of rice seedlings in arsenic-affected soils, making it a potential solution for bioremediation and improving agricultural productivity in contaminated areas.
View Article and Find Full Text PDF

Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates.

View Article and Find Full Text PDF

Application of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits.

View Article and Find Full Text PDF