Publications by authors named "Krishnendu Chakrabarty"

Purpose: Our purpose is to develop a computer vision approach to quantify intra-arterial thickness on digital pathology images of kidney biopsies as a computational biomarker of arteriosclerosis.

Approach: The severity of the arteriosclerosis was scored (0 to 3) in 753 arteries from 33 trichrome-stained whole slide images (WSIs) of kidney biopsies, and the outer contours of the media, intima, and lumen were manually delineated by a renal pathologist. We then developed a multi-class deep learning (DL) framework for segmenting the different intra-arterial compartments (training dataset: 648 arteries from 24 WSIs; testing dataset: 105 arteries from 9 WSIs).

View Article and Find Full Text PDF

Flow-based microfluidic biochips (FMBs) are widely used in biomedical research and diagnostics. However, their security against potential material-level cyber-physical attacks remains inadequately explored, posing a significant future challenge. One of the main components, polydimethylsiloxane (PDMS) microvalves, is pivotal to FMBs' functionality.

View Article and Find Full Text PDF

Wearable Internet of Things (WIoT) and Artificial Intelligence (AI) are rapidly emerging technologies for healthcare. These technologies enable seamless data collection and precise analysis toward fast, resource-abundant, and personalized patient care. However, conventional machine learning workflow requires data to be transferred to the remote cloud server, which leads to significant privacy concerns.

View Article and Find Full Text PDF

Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by either doping with reactive solvents or altering the PDMS curing ratio during fabrication.

View Article and Find Full Text PDF

Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias.

View Article and Find Full Text PDF

Flow-based microfluidic biochips (FMBs) have seen rapid commercialization and deployment in recent years for point-of-care and clinical diagnostics. However, the outsourcing of FMB design and manufacturing makes them susceptible to susceptible to malicious physical level and intellectual property (IP)-theft attacks. This work demonstrates the first structure-based (SB) attack on representative commercial FMBs.

View Article and Find Full Text PDF

Urine diversion in a No-Mix Toilet is a promising approach for sustainable fertilizers and reduction of the nutrient load for wastewater treatment; however, user adoption remains a challenge. This study evaluates the Urine Trap, a passive No-Mix toilet design based on the teapot effect, wherein the urine stream inlet is invisible to the user and therefore it does not impact the user experience for increased adoption. This study evaluated the nutrient separation performance of a Urine Trap flush toilet in a bathroom shared by women in two sites in India.

View Article and Find Full Text PDF

The ability to precisely manipulate nano-objects on a large scale can enable the fabrication of materials and devices with tunable optical, electromagnetic, and mechanical properties. However, the dynamic, parallel manipulation of nanoscale colloids and materials remains a significant challenge. Here, we demonstrate acoustoelectronic nanotweezers, which combine the precision and robustness afforded by electronic tweezers with versatility and large-field dynamic control granted by acoustic tweezing techniques, to enable the massively parallel manipulation of sub-100 nm objects with excellent versatility and controllability.

View Article and Find Full Text PDF
Article Synopsis
  • Acoustics-based tweezers offer a novel method for manipulating bioparticles and bioanalytes without direct contact, using stable vortices instead of traditional acoustic radiation forces.
  • These tweezers generate predictable flow patterns, allowing for precise control over the movement of droplets and particles on a surface.
  • The research highlights a programmable platform that can perform various tasks like transporting and merging droplets, as well as mixing for biochemical reactions, making it a significant advancement in digitalized liquid handling and bioanalysis.
View Article and Find Full Text PDF

A digital microfluidic biochip (DMB) is an attractive platform for automating laboratory procedures in microbiology. To overcome the problem of cross-contamination due to fouling of the electrode surface in traditional DMBs, a contactless liquid-handling biochip technology, referred to as acoustofluidics, has recently been proposed. A major challenge in operating this platform is the need for a control signal of frequency 24 MHz and voltage range ±10/±20 V to activate the IDT units in the biochip.

View Article and Find Full Text PDF

There is an unmet need for a low-cost instrumented technology for detecting sanitation-related malodor as an alert for maintenance around shared toilets and emerging technologies for onsite waste treatment. In this article, our approach to an electronic nose for sanitation-related malodor is based on the use of electrochemical gas sensors, and machine-learning techniques for sensor selection and odor classification. We screened 10 sensors from different vendors with specific target gases and recorded their response to malodor from fecal specimens and urine specimens, and confounding good odors such as popcorn.

View Article and Find Full Text PDF

Advances in lab-on-a-chip technologies are driven by the pursuit of programmable microscale bioreactors or fluidic processors that mimic electronic functionality, scalability, and convenience. However, few fluidic mechanisms allow for basic logic operations on rewritable fluidic paths due to cross-contamination, which leads to random interference between "fluidic bits" or droplets. Here, we introduce a mechanism that allows for contact-free gating of individual droplets based on the scalable features of acoustic streaming vortices (ASVs).

View Article and Find Full Text PDF

Contact-free manipulation of small objects (e.g., cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption.

View Article and Find Full Text PDF

Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g.

View Article and Find Full Text PDF

Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. In recent years, digital microfluidic biochips (DMFBs) have been adopted as a platform for sample preparation. However, there remain two major problems associated with sample preparation on a conventional DMFB.

View Article and Find Full Text PDF

A digital microfluidic biochip (DMFB) is an attractive technology platform for automating laboratory procedures in biochemistry. In recent years, DMFBs based on a microelectrode-dot-array (MEDA) architecture have been demonstrated. However, due to the inherent differences between today's DMFBs and MEDA, existing synthesis solutions for biochemistry mapping cannot be utilized for MEDA biochips.

View Article and Find Full Text PDF

A digital microfluidic biochip (DMFB) is an emerging technology that enables miniaturized analysis systems for point-of-care clinical diagnostics, DNA sequencing, and environmental monitoring. A DMFB reduces the rate of sample and reagent consumption, and automates the analysis of assays. In this paper, we provide the first assessment of the security vulnerabilities of DMFBs.

View Article and Find Full Text PDF

Dependability is an important system attribute for microfluidic lab-on-chip. Robust testing methods are therefore needed to ensure correct results. Previously proposed techniques for reading test outcomes and for pulse-sequence analysis are cumbersome and error prone.

View Article and Find Full Text PDF