When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of plane deformation around the contact line (, a wetting ridge). For soft elastomeric surfaces that are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity (, molecular weight).
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene--poly(vinyl methyl siloxane) (PS--PVMS) using thiol-ene click reactions.
View Article and Find Full Text PDFMacromol Rapid Commun
October 2023
Understanding how small molecules penetrate and contaminate polymer films is of vital importance for developing protective coatings for a wide range of applications. To this end, rhodamine B fluorescent dye is visualized diffusing through polystyrene-polydimethylsiloxane block copolymer (BCP) coatings using confocal microscopy. The intensity of dye inside the coatings grows and decays non-monotonically, which is likely due to a combination of dye molecule transport occurring concurrently in different directions.
View Article and Find Full Text PDFThe attachment and detachment of microparticles at a liquid-liquid interface are common in many material systems, from Pickering emulsions and colloidal assemblies to capillary suspensions. Properties of these systems rely on how the particles interact with the liquid-liquid interface, including the detachment process. In this study, we simultaneously measure the capillary detachment force of a microparticle from a liquid-liquid interface and visualize the shape of the meniscus by combining colloidal probe microscopy and confocal microscopy.
View Article and Find Full Text PDFThe wetting of polymer melts at high temperatures is studied by placing a glycerol drop on a poly(-butyl methacrylate) film and measuring the wetting ridge. The height of the wetting ridge grows continuously over time. These wetting ridge growth rates can be explained by polymer chain dynamics occurring at the molecular level, determined using oscillatory shear rheology of the polymer melt.
View Article and Find Full Text PDFWe developed a thermal-gelling, erodible hydrogel system for localized delivery of viable mitochondria in vivo, as well as labeled transplanted mitochondria with specific dyes and/or genetically modified mitochondria tagged with red fluorescence protein (RFP). We also employed cell lines to optimize a hydrogel composed of methylcellulose and hyaluronic acid designed to preserve bioenergetics while facilitating mitochondrial release. We further investigated how transplantation of allogeneic or xenogeneic mitochondria into respective cell lines affects host cellular metabolism, as measured by MTS assay.
View Article and Find Full Text PDF