Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-β peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task.
View Article and Find Full Text PDFAmyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2024
The detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for in vitro studies, it is crucial to optimize the experimental conditions for a given polymer to solubilize target membranes/proteins effectively. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2024
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups.
View Article and Find Full Text PDFThe detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for studies, it is crucial to optimize the experimental conditions for a given polymer to effectively solubilize target membranes/proteins. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions.
View Article and Find Full Text PDFElevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail ( , , 11-18).
View Article and Find Full Text PDFThe nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge.
View Article and Find Full Text PDFResidual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids.
View Article and Find Full Text PDFAtomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area.
View Article and Find Full Text PDFAlthough polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs.
View Article and Find Full Text PDFThe membrane-anchored flavin mononucleotide binding domain (FBD) of CYP450 reductase was extracted in lipid-nanodiscs using charge-free pentyl-inulin polymer. FBD in nanodiscs was found to be conformationally homogenous and enabled high-resolution NMR probing. P NMR revealed the polymer's lack of preference for any specific lipids and identified the lipid-types in nanodiscs.
View Article and Find Full Text PDFVenoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX-Mg1a, which is a major component of the venom of the Australian giant red bull ant and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw.
View Article and Find Full Text PDFDipeptide repeats (DPRs) are known to play important roles in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies on DPRs have reported on the kinetics of aggregation, toxicity, and low-resolution morphology of the aggregates of these peptides. While the dipeptide hexa-repeats of Gly-Pro [(GP)] have been shown to be nonaggregating, Gly-Ala [(GA)] and Gly-Arg [(GR)] exhibited the formation of neurotoxic aggregates.
View Article and Find Full Text PDFThe malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions.
View Article and Find Full Text PDFCytochrome-P450-reductase transfers electrons to cytochrome-P450 through its flavin mononucleotide binding domain (FBD). Despite the importance of membrane-anchoring for FBD function, studies have focused on its soluble domain lacking the transmembrane-domain. Here we demonstrate that the reconstitution of FBD in nanodiscs enables high-resolution NMR measurements and renders a stable conformation.
View Article and Find Full Text PDFThe understanding and prediction of the solubility of biomolecules, even of the simplest ones, reflect an open question and unmet need. Short aromatic tripeptides are among the most highly aggregative biomolecules. However, in marked contrast, Ala-Phe-Ala (AFA) was surprisingly found to be non-aggregative and could be solubilized at millimolar concentrations.
View Article and Find Full Text PDFAcrorhagin I (U-AITX-Aeq5a) is a disulfide-rich peptide identified in the aggressive organs (acrorhagi) of the sea anemone Actinia equina. Previous studies (Toxicon 2005, 46:768-74) found that the peptide is toxic in crabs, although the structural and functional properties of acrorhagin I have not been reported. In this work, an Escherichia coli (BL21 strain) expression system was established for the preparation of C,N-labelled acrorhagin I, and the solution structure was determined using NMR spectroscopy.
View Article and Find Full Text PDFWe describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated K1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to K1.
View Article and Find Full Text PDFDespite their denaturing properties, detergents are used to purify and study membrane proteins. Herein, we demonstrated a polymer-based detergent-free extraction of the membrane protein cytochrome-b5 along with E. coli lipids.
View Article and Find Full Text PDFSea anemone venoms have long been recognised as a rich source of peptides with interesting pharmacological and structural properties. Our recent transcriptomic studies of the Australian sea anemone Actinia tenebrosa have identified a novel 13-residue peptide, U-AITx-Ate1. U-AITx-Ate1 contains a single disulfide bridge and bears no significant homology to previously reported amino acid sequences of peptides from sea anemones or other species.
View Article and Find Full Text PDFFusion peptides (FPs) in spike proteins are key players mediating early events in cell-to-cell fusion, vital for intercellular viral spread. A proline residue located at the central FP region has often been suggested to have a distinctive role in this fusion event. The spike glycoprotein from strain RSA59 (PP) of mouse hepatitis virus (MHV) contains two central, consecutive prolines in the FP.
View Article and Find Full Text PDFApical membrane antigen 1 (AMA1) is essential for the invasion of host cells by malaria parasites. Several small-molecule ligands have been shown to bind to a conserved hydrophobic cleft in Plasmodium falciparum AMA1. However, a lack of detailed structural information on the binding pose of these molecules has hindered their further optimisation as inhibitors.
View Article and Find Full Text PDFTransient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope.
View Article and Find Full Text PDF