In the realm of intelligent sensor systems, the dependence on Artificial Intelligence (AI) applications has heightened the importance of interpretability. This is particularly critical for opaque models such as Deep Neural Networks (DNN), as understanding their decisions is essential, not only for ethical and regulatory compliance, but also for fostering trust in AI-driven outcomes. This paper introduces the novel concept of a Computer Vision Interpretability Index (CVII).
View Article and Find Full Text PDFBackground: Web-based resources and social media platforms play an increasingly important role in health-related knowledge and experience sharing. There is a growing interest in the use of these novel data sources for epidemiological surveillance of substance use behaviors and trends.
Objective: The key aims were to describe the development and application of the drug abuse ontology (DAO) as a framework for analyzing web-based and social media data to inform public health and substance use research in the following areas: determining user knowledge, attitudes, and behaviors related to nonmedical use of buprenorphine and illicitly manufactured opioids through the analysis of web forum data Prescription Drug Abuse Online Surveillance; analyzing patterns and trends of cannabis product use in the context of evolving cannabis legalization policies in the United States through analysis of Twitter and web forum data (eDrugTrends); assessing trends in the availability of novel synthetic opioids through the analysis of cryptomarket data (eDarkTrends); and analyzing COVID-19 pandemic trends in social media data related to 13 states in the United States as per Mental Health America reports.
Annu Int Conf IEEE Eng Med Biol Soc
July 2022
Heart failure occurs when the heart is not able to pump blood and oxygen to support other organs in the body as it should. Treatments include medications and sometimes hospitalization. Patients with heart failure can have both cardiovascular as well as non-cardiovascular comorbidities.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
While there has been recent progress in abstractive summarization as applied to different domains including news articles, scientific articles, and blog posts, the application of these techniques to clinical text summarization has been limited. This is primarily due to the lack of large-scale training data and the messy/unstructured nature of clinical notes as opposed to other domains where massive training data come in structured or semi -structured form. Further, one of the least explored and critical components of clinical text summarization is factual accuracy of clinical summaries.
View Article and Find Full Text PDFBackground: In clinical diagnostic interviews, mental health professionals (MHPs) implement a care practice that involves asking open questions (eg, "What do you want from your life?" "What have you tried before to bring change in your life?") while listening empathetically to patients. During these interviews, MHPs attempted to build a trusting human-centered relationship while collecting data necessary for professional medical and psychiatric care. Often, because of the social stigma of mental health disorders, patient discomfort in discussing their presenting problem may add additional complexities and nuances to the language they use, that is, hidden signals among noisy content.
View Article and Find Full Text PDFWith the increasing legalization of medical and recreational use of cannabis, more research is needed to understand the association between depression and consumer behavior related to cannabis consumption. Big social media data has potential to provide deeper insights about these associations to public health analysts. In this interdisciplinary study, we demonstrate the value of incorporating domain-specific knowledge in the learning process to identify the relationships between cannabis use and depression.
View Article and Find Full Text PDFCOVID-19 pandemic has adversely and disproportionately impacted people suffering from mental health issues and substance use problems. This has been exacerbated by social isolation during the pandemic and the social stigma associated with mental health and substance use disorders, making people reluctant to share their struggles and seek help. Due to the anonymity and privacy they provide, social media emerged as a convenient medium for people to share their experiences about their day to day struggles.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Sickle Cell Disease (SCD) is a hereditary disorder of red blood cells in humans. Complications such as pain, stroke, and organ failure occur in SCD as malformed, sickled red blood cells passing through small blood vessels get trapped. Particularly, acute pain is known to be the primary symptom of SCD.
View Article and Find Full Text PDFDepression is a major public health concern in the U.S. and globally.
View Article and Find Full Text PDFTHIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of harassment in user-generated content and its negative impact calls for robust automatic detection approaches. This requires the identification of different types of harassment.
View Article and Find Full Text PDFBackground: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients' environment and their adherence to an asthma care plan, which poses a significant challenge for asthma management.
View Article and Find Full Text PDFBackground: In the traditional asthma management protocol, a child meets with a clinician infrequently, once in 3 to 6 months, and is assessed using the Asthma Control Test questionnaire. This information is inadequate for timely determination of asthma control, compliance, precise diagnosis of the cause, and assessing the effectiveness of the treatment plan. The continuous monitoring and improved tracking of the child's symptoms, activities, sleep, and treatment adherence can allow precise determination of asthma triggers and a reliable assessment of medication compliance and effectiveness.
View Article and Find Full Text PDFOur current health applications do not adequately take into account contextual and personalized knowledge about patients. In order to design "Personalized Coach for Healthcare" applications to manage chronic diseases, there is a need to create a Personalized Healthcare Knowledge Graph (PHKG) that takes into consideration a patient's health condition (personalized knowledge) and enriches that with contextualized knowledge from environmental sensors and Web of Data (e.g.
View Article and Find Full Text PDFProc IEEE WIC ACM Int Conf Web Intell Intell Agent Technol
August 2017
Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully.
View Article and Find Full Text PDFProc IEEE ACM Int Conf Adv Soc Netw Anal Min
July 2017
With the rise of social media, millions of people are routinely expressing their moods, feelings, and daily struggles with mental health issues on social media platforms like Twitter. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of clinical depression from tweets obtained unobtrusively. Based on the analysis of tweets crawled from users with self-reported depressive symptoms in their Twitter profiles, we demonstrate the potential for detecting clinical depression symptoms which emulate the PHQ-9 questionnaire clinicians use today.
View Article and Find Full Text PDFHealthcare as we know it is in the process of going through a massive change - from episodic to continuous, from disease focused to wellness and quality of life focused, from clinic centric to anywhere a patient is, from clinician controlled to patient empowered, and from being driven by limited data to 360-degree, multimodal personal-public-population physical-cyber-social big data driven. While ability to create and capture data is already here, the upcoming innovations will be in converting this big data into smart data through contextual and personalized processing such that patients and clinicians can make better decisions and take timely actions for augmented personalized health. This paper outlines current opportunities and challenges, with a focus on key AI approaches to make this a reality.
View Article and Find Full Text PDFObjective: Twitter data offer new possibilities for tracking health-related communications. This study is among the first to apply advanced information processing to identify geographic and content features of cannabis-related tweeting in the United States.
Method: Tweets were collected using streaming Application Programming Interface (March-May 2016) and were processed by eDrugTrends to identify geolocation and classify content by source (personal communication, media, retail) and sentiment (positive, negative, neutral).
Monitoring indoor air quality is critical because Americans spend 93% of their life indoors, and around 6.3 million children suffer from asthma. We want to passively and unobtrusively monitor the asthma patient's environment to detect the presence of two asthma-exacerbating activities: smoking and cooking using the Foobot sensor.
View Article and Find Full Text PDFRepresenting world knowledge in a machine processable format is important as entities and their descriptions have fueled tremendous growth in knowledge-rich information processing platforms, services, and systems. Prominent applications of knowledge graphs include search engines (e.g.
View Article and Find Full Text PDFJMIR Public Health Surveill
October 2016
Background: To harness the full potential of social media for epidemiological surveillance of drug abuse trends, the field needs a greater level of automation in processing and analyzing social media content.
Objectives: The objective of the study is to describe the development of supervised machine-learning techniques for the eDrugTrends platform to automatically classify tweets by type/source of communication (personal, official/media, retail) and sentiment (positive, negative, neutral) expressed in cannabis- and synthetic cannabinoid-related tweets.
Methods: Tweets were collected using Twitter streaming Application Programming Interface and filtered through the eDrugTrends platform using keywords related to cannabis, marijuana edibles, marijuana concentrates, and synthetic cannabinoids.
While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker.
View Article and Find Full Text PDFBackground: Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting scientific literature. Prior approaches to LBD include use of: (1) domain expertise and structured background knowledge to manually filter and explore the literature, (2) distributional statistics and graph-theoretic measures to rank interesting connections, and (3) heuristics to help eliminate spurious connections. However, manual approaches to LBD are not scalable and purely distributional approaches may not be sufficient to obtain insights into the meaning of poorly understood associations.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2014
Semantic computing technologies have matured to be applicable to many critical domains such as national security, life sciences, and health care. However, the key to their success is the availability of a rich domain knowledge base. The creation and refinement of domain knowledge bases pose difficult challenges.
View Article and Find Full Text PDF