Small molecule potent IRAK4 inhibitors from a novel bicyclic heterocycle class were designed and synthesized based on hits identified from Aurigene's compound library. The advanced lead compound, CA-4948, demonstrated good cellular activity in ABC DLBCL and AML cell lines. Inhibition of TLR signaling leading to decreased IL-6 levels was also observed in whole blood assays.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
August 2020
CVT-313 is a potent CDK2 inhibitor that was identified by screening a purine-analogue library and is currently in preclinical studies. Since this molecule has the potential to be developed as a CDK2 inhibitor for cancer therapy, the potency of CVT-313 to bind and stabilize CDK2 was evaluated, together with its ability to inhibit aberrant cell proliferation. CVT-313 increased the melting temperature of CDK2 by 7°C in thermal stabilization studies, thus indicating its protein-stabilizing effect.
View Article and Find Full Text PDFThe X-ray structure of the previously reported PPARδ modulator bound to the ligand binding domain (LBD) revealed that the amide moiety in exists in the thermodynamically disfavored -amide orientation. Isosteric replacement of the -amide with five-membered heterocycles led to the identification of imidazole (MA-0204), a potent, selective PPARδ modulator with good pharmacokinetic properties. MA-0204 was tested in mice and in patient-derived muscle myoblasts (from Duchenne Muscular Dystrophy (DMD) patients); altered the expression of PPARδ target genes and improved fatty acid oxidation, which supports the therapeutic hypothesis for the study of MA-0204 in DMD patients.
View Article and Find Full Text PDFMelioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months.
View Article and Find Full Text PDFA novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography.
View Article and Find Full Text PDFProtein tyrosine phosphatase 1B (PTP1B) is a prototype non receptor cytoplasmic PTPase enzyme that has been implicated in regulation of insulin and leptin signaling pathways. Studies on PTP1B knockout mice and PTP1B antisense treated mice suggested that inhibition of PTP1B would be an effective strategy for the treatment of type II diabetes and obesity. Here we report the X-ray structure of PTP1B in complex with compound IN1834-146C (PDB ID 4I8N).
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2013
We have identified a novel 7-azaindole series of anaplastic lymphoma kinase (ALK) inhibitors. Compounds 7b, 7 m and 7 n demonstrate excellent potencies in biochemical and cellular assays. X-ray crystal structure of one of the compounds (7 k) revealed a unique binding mode with the benzyl group occupying the back pocket, explaining its potency towards ALK and selectivity over tested kinases particularly Aurora-A.
View Article and Find Full Text PDF