We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.
View Article and Find Full Text PDFPowerful, facile new ways to create libraries of site-directed mutants are demonstrated. These include: (1) one-pot-PCR, (2) multi-pot-PCR, and (3) split-mix-PCR. One-pot-PCR uses mutant oligonucleotides to generate megaprimers in situ, and it was used to randomly incorporate 28 mutations in a gabT gene in a single reaction.
View Article and Find Full Text PDFStructural determination of protein-protein complexes such as multidomain nuclear receptors has been challenging for high-resolution structural techniques. Here, we present a combined use of multiple biophysical methods, termed iSPOT, an integration of shape information from small-angle X-ray scattering (SAXS), protection factors probed by hydroxyl radical footprinting, and a large series of computationally docked conformations from rigid-body or molecular dynamics (MD) simulations. Specifically tested on two model systems, the power of iSPOT is demonstrated to accurately predict the structures of a large protein-protein complex (TGFβ-FKBP12) and a multidomain nuclear receptor homodimer (HNF-4α), based on the structures of individual components of the complexes.
View Article and Find Full Text PDFWe compute potentials of mean force for bend and twist deformations via force pulling and umbrella sampling experiments for four β-solenoid proteins (BSPs) that show promise in nanotechnology applications. In all cases, we find quasi-Hooke's law behavior until the point of rupture. Bending moduli show modest anisotropy for two-sided and three-sided BSPs, and little anisotropy for a four-sided BSP.
View Article and Find Full Text PDFMeasurements from hydroxyl radical footprinting (HRF) provide rich information about the solvent accessibility of amino acid side chains of a protein. Traditional HRF data analyses focus on comparing the difference in the modification/footprinting rate of a specific site to infer structural changes across two protein states, e.g.
View Article and Find Full Text PDFNature provides numerous examples of self-assembly that can potentially be implemented for materials applications. Considerable attention has been given to one-dimensional cross-β or amyloid structures that can serve as templates for wire growth or strengthen materials such as glue or cement. Here, we demonstrate controlled amyloid self-assembly based on modifications of β-solenoid proteins.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2014
The ligand-binding domain (LBD) of an estrogen receptor undergoes a large conformational switching from an inactive to active state in response to hormone stimuli. Very recently, a novel D538G mutant has been identified to be active in advanced breast cancer tumors. Here, we ask if molecular simulations can provide insight on its mechanistic impact on the receptor's activation status.
View Article and Find Full Text PDFWe examine the energetics of β-strand packing in a fibril-forming SH3 domain using a simple sequence-based energy model. First, we describe this packing energy function and then apply it to three model systems: Aβ, HET-s prion, and SH3 domain. The packing results of Aβ and HET-s are compared to and are consistent with available experimental and computational results.
View Article and Find Full Text PDFEstrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape.
View Article and Find Full Text PDFA generalized method, termed Fast-SAXS-pro, for computing small angle x-ray scattering (SAXS) profiles of proteins, nucleic acids, and their complexes is presented. First, effective coarse-grained structure factors of DNA nucleotides are derived using a simplified two-particle-per-nucleotide representation. Second, SAXS data of a 18-bp double-stranded DNA are measured and used for the calibration of the scattering contribution from excess electron density in the DNA solvation layer.
View Article and Find Full Text PDFUnderstanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes.
View Article and Find Full Text PDFIn protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces.
View Article and Find Full Text PDFMolecular interactions of optical clearing agents were investigated using a combination of molecular dynamics (MD) simulations and optical spectroscopy. For a series of sugar alcohols with low to high optical clearing potential, Raman spectroscopy and integrating sphere measurements were used to quantitatively characterize tissue water loss and reduction in light scattering following agent exposures. The rate of tissue water loss was found to correlate with agent optical clearing potential, but equivalent tissue optical clearing was measured in native and fixed tissue in vitro, given long-enough exposure times to the polyol series.
View Article and Find Full Text PDFConformational stability of the collagen triple helix affects its turnover and determines tissue homeostasis. Although it is known that the presence of imino acids (prolines or hydroxyprolines) confer stability to the molecule, little is known regarding the stability of the imino-poor region lacking imino acids, which plays a key role in collagen cleavage. In particular, there have been continuing debates about the role of water in collagen stability.
View Article and Find Full Text PDF