Intracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use.
View Article and Find Full Text PDFThe study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses.
View Article and Find Full Text PDFBrain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g.
View Article and Find Full Text PDFIntracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use.
View Article and Find Full Text PDFMethylphenidate (MPH, brand: Ritalin) is a common stimulant used both medically and non-medically. Though typically prescribed for its cognitive effects, MPH also affects movement. While it is known that MPH noncompetitively blocks the reuptake of catecholamines through inhibition of dopamine and norepinephrine transporters, a critical step in exploring how it affects behavior is to understand how MPH directly affects neural activity.
View Article and Find Full Text PDFWe used a dynamical systems perspective to understand decision-related neural activity, a fundamentally unresolved problem. This perspective posits that time-varying neural activity is described by a state equation with an initial condition and evolves in time by combining at each time step, recurrent activity and inputs. We hypothesized various dynamical mechanisms of decisions, simulated them in models to derive predictions, and evaluated these predictions by examining firing rates of neurons in the dorsal premotor cortex (PMd) of monkeys performing a perceptual decision-making task.
View Article and Find Full Text PDFNeuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease.
View Article and Find Full Text PDFSpeech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text or sound. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays.
View Article and Find Full Text PDFThe brain represents sensory variables in the coordinated activity of neural populations, in which tuning curves of single neurons define the geometry of the population code. Whether the same coding principle holds for dynamic cognitive variables remains unknown because internal cognitive processes unfold with a unique time course on single trials observed only in the irregular spiking of heterogeneous neural populations. Here we show the existence of such a population code for the dynamics of choice formation in the primate premotor cortex.
View Article and Find Full Text PDFIntracortical brain computer interfaces (iBCIs) decode neural activity from the cortex and enable motor and communication prostheses, such as cursor control, handwriting and speech, for people with paralysis. This paper introduces a new iBCI communication prosthesis using a 3D keyboard interface for typing using continuous, closed loop movement of multiple fingers. A participant-specific BCI keyboard prototype was developed for a BrainGate2 clinical trial participant (T5) using neural recordings from the hand-knob area of the left premotor cortex.
View Article and Find Full Text PDFAdvances in deep learning have given rise to neural network models of the relationship between movement and brain activity that appear to far outperform prior approaches. Brain-computer interfaces (BCIs) that enable people with paralysis to control external devices, such as robotic arms or computer cursors, might stand to benefit greatly from these advances. We tested recurrent neural networks (RNNs) on a challenging nonlinear BCI problem: decoding continuous bimanual movement of two computer cursors.
View Article and Find Full Text PDFIntracortical brain-computer interfaces (iBCIs) require frequent recalibration to maintain robust performance due to changes in neural activity that accumulate over time. Compensating for this nonstationarity would enable consistently high performance without the need for supervised recalibration periods, where users cannot engage in free use of their device. Here we introduce a hidden Markov model (HMM) to infer what targets users are moving toward during iBCI use.
View Article and Find Full Text PDFBackground And Objectives: Brain-computer interfaces (BCIs) are being developed to restore mobility, communication, and functional independence to people with paralysis. Though supported by decades of preclinical data, the safety of chronically implanted microelectrode array BCIs in humans is unknown. We report safety results from the prospective, open-label, nonrandomized BrainGate feasibility study (NCT00912041), the largest and longest-running clinical trial of an implanted BCI.
View Article and Find Full Text PDFComputational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH cells and Tac1 cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor.
View Article and Find Full Text PDFRecent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution in animal models. In humans, however, current approaches restrict recordings to a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here we describe a new probe variant and set of techniques that enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes.
View Article and Find Full Text PDFThe brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task in a curl force field that elicited new muscle forces for some, but not all, movement directions.
View Article and Find Full Text PDFCortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method () that combines non-linear dimensionality reduction with graph clustering to identify putative cell types.
View Article and Find Full Text PDFCalcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) can restore communication to people who have lost the ability to move or speak. So far, a major focus of BCI research has been on restoring gross motor skills, such as reaching and grasping or point-and-click typing with a computer cursor. However, rapid sequences of highly dexterous behaviours, such as handwriting or touch typing, might enable faster rates of communication.
View Article and Find Full Text PDFIntracortical brain-computer interfaces (iBCIs) provide people with paralysis a means to control devices with signals decoded from brain activity. Despite recent impressive advances, these devices still cannot approach able-bodied levels of control. To achieve naturalistic control and improved performance of neural prostheses, iBCIs will likely need to include proprioceptive feedback.
View Article and Find Full Text PDFObjective: Individuals with neurological disease or injury such as amyotrophic lateral sclerosis, spinal cord injury or stroke may become tetraplegic, unable to speak or even locked-in. For people with these conditions, current assistive technologies are often ineffective. Brain-computer interfaces are being developed to enhance independence and restore communication in the absence of physical movement.
View Article and Find Full Text PDFNeural recording technologies increasingly enable simultaneous measurement of neural activity from multiple brain areas. To gain insight into distributed neural computations, a commensurate advance in experimental and analytical methods is necessary. We discuss two opportunities towards this end: the manipulation and modeling of neural population dynamics.
View Article and Find Full Text PDFIntracortical brain-computer interfaces (iBCIs) have the potential to restore hand grasping and object interaction to individuals with tetraplegia. Optimal grasping and object interaction require simultaneous production of both force and grasp outputs. However, since overlapping neural populations are modulated by both parameters, grasp type could affect how well forces are decoded from motor cortex in a closed-loop force iBCI.
View Article and Find Full Text PDFIn dynamic environments, subjects often integrate multiple samples of a signal and combine them to reach a categorical judgment. The process of deliberation can be described by a time-varying decision variable (DV), decoded from neural population activity, that predicts a subject's upcoming decision. Within single trials, however, there are large moment-to-moment fluctuations in the DV, the behavioural significance of which is unclear.
View Article and Find Full Text PDF