Publications by authors named "Krishna S Ghanta"

CRISPR-based genome-editing technologies, including nuclease editing, base editing, and prime editing, have recently revolutionized the development of therapeutics targeting disease-causing mutations. To advance the assessment and development of genome editing tools, a robust mouse model is valuable, particularly for evaluating activity and delivery strategies. In this study, we successfully generated a knock-in mouse line carrying the Traffic Light Reporter design known as TLR-multi-Cas variant 1 (TLR-MCV1).

View Article and Find Full Text PDF

Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA-repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy.

View Article and Find Full Text PDF

In targeted genome editing techniques are now routinely used to generate germline edits. The remarkable ease of germline editing is attributed to the syncytial nature of the pachytene ovary which is easily accessed by microinjection. This protocol describes the step-by-step details and troubleshooting tips for the entire CRISPR-Cas genome editing procedure, including gRNA design and microinjection of ribonucleoprotein complexes, followed by screening and genotyping in , to help accessing this powerful genetic animal system.

View Article and Find Full Text PDF

Intestinal microbiota play an essential role in the health of a host organism. Here, we define how commensal Escherichia coli (E. coli) alters its host after long term exposure to glucose using a Caenorhabditis elegans-E.

View Article and Find Full Text PDF

CRISPR genome editing has revolutionized genetics in many organisms. In the nematode , one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring coselection strategies.

View Article and Find Full Text PDF

CRISPR-based genome editing using ribonucleoprotein complexes and synthetic single-stranded oligodeoxynucleotide (ssODN) donors can be highly effective. However, reproducibility can vary, and precise, targeted integration of longer constructs-such as green fluorescent protein tags remains challenging in many systems. Here, we describe a streamlined and optimized editing protocol for the nematode We demonstrate its efficacy, flexibility, and cost-effectiveness by affinity-tagging 14 Argonaute proteins in using ssODN donors.

View Article and Find Full Text PDF

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results.

View Article and Find Full Text PDF

Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is characterized by the lack of expression of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). However, pathways responsible for downregulation of therapeutic receptors, as well as subsequent aggressiveness, remain unknown. In this study, we discovered that lactoferrin (Lf) efficiently downregulates levels of ER-α, PR, and HER-2 in a proteasome-dependent manner in breast cancer cells, and it accounts for the loss of responsiveness to ER- or HER-2-targeted therapies.

View Article and Find Full Text PDF

Background: Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function.

View Article and Find Full Text PDF

Although both metastatic tumor antigen 1 (MTA1), a master chromatin modifier, and transglutaminase 2 (TG2), a multifunctional enzyme, are known to be activated during inflammation, it remains unknown whether these molecules regulate inflammatory response in a coordinated manner. Here we investigated the role of MTA1 in the regulation of TG2 expression in bacterial lipopolysaccharide (LPS)-stimulated mammalian cells. While studying the impact of MTA1 status on global gene expression, we unexpectedly discovered that MTA1 depletion impairs the basal as well as the LPS-induced expression of TG2 in multiple experimental systems.

View Article and Find Full Text PDF