Organic water pollutants like nitroaromatics and synthetic dyes are causing serious threats to water. Ever-growing urban and industrial activities along with population explosion are rapidly contributing severe level of water contamination. Semiconducting nanomaterial-based photocatalysis has been proven to be an effective process for degradation of organic water pollutants.
View Article and Find Full Text PDFThe current study is focused on fabrication of a ternary metal oxide nanocomposite (ZnO/CuO/AgO) as an efficient and superior photocatalyst by step-wise implanting of p-type CuO and AgO semiconductors onto an n-type semiconductor (ZnO) via a chemical method. The structural and textural characteristics of the manufactured samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy combined with electron dispersive spectroscopy (FESEM-EDS) and UV-visible spectroscopy. The photocatalytic performance of the fabricated ternary nanocomposite was tested against the photocatalytic degradation of crystal violet (CV) and rhodamine B (RhB) organic dyes under solar light irradiation.
View Article and Find Full Text PDF