Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not.
View Article and Find Full Text PDFMany animals that lose neural tissue to injury or disease can maintain behavioral repertoires by regenerating new neurons or reorganizing existing neural circuits. However, most neuroscience small model organisms lack this high degree of neural plasticity. We show that can maintain stable sensory-motor behaviors despite 2-fold changes in neuron count, due to naturally occurring size variation or surgical resection.
View Article and Find Full Text PDFAdvances in microfabrication technologies and biomaterials have enabled a growing class of electronic devices that can stimulate and record bioelectronic signals. Many of these devices have been developed for humans or vertebrate animals, where miniaturization allows for implantation within the body. There are, however, another class of bioelectronic interfaces that exploit microfabrication and nanoelectronics to record signals from tiny, millimeter-sized organisms.
View Article and Find Full Text PDFUnderstanding factors affecting the susceptibility of organisms to thermal stress is of enormous interest in light of our rapidly changing climate. When adaptation is limited, thermal acclimation and deacclimation abilities of organisms are critical for population persistence through a period of thermal stress. Holobionts (hosts plus associated symbionts) are key components of various ecosystems, such as coral reefs, yet the contributions of their two partners to holobiont thermal plasticity are poorly understood.
View Article and Find Full Text PDFThe nervous system of the cnidarian Hydra vulgaris exhibits remarkable regenerative abilities. When cut in two, the bisected tissue reorganizes into fully behaving animals in approximately 48 hours. Furthermore, new animals can reform from aggregates of dissociated cells.
View Article and Find Full Text PDFElectrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device.
View Article and Find Full Text PDF