A promising strategy to improve the therapeutic efficiency of antimicrobial agents is targeted therapy. Although vancomycin has been considered a gold standard for the therapy of MRSA pneumonia, clinical failure rates have also been reported owing to its slow, time-dependent bactericidal activity, variable lung tissue penetration and poor intracellular penetration into macrophages. Liposomal encapsulation has been established as an alternative for antimicrobial delivery to infected tissue macrophages and offers enhanced pharmacodynamics, pharmacokinetics and decreased toxicity compared to standard preparations.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2011
Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) often cannot be cured by vancomycin treatment. Poor lung tissue and intracellular penetration limits the ability to achieve effective bactericidal levels, particularly in alveolar macrophages, where MRSA can evade phagocytic killing. Compared to standard formulations, liposome encapsulation has been shown to enhance vancomycin intracellular killing of MRSA.
View Article and Find Full Text PDFMeticillin-resistant Staphylococcus aureus (MRSA) can persist in alveolar macrophages and contribute to clinical failure of intravenous vancomycin to cure pneumonia. In this study, it was shown that vancomycin in standard solution is unable to kill intracellular MRSA within macrophages. The intracellular viability of MRSA inside macrophages treated with two different formulations of encapsulated liposomal vancomycin prepared using a hydration-dehydration method was then determined.
View Article and Find Full Text PDF