Publications by authors named "Krishna Moorthi Bhat"

Article Synopsis
  • Post-translational modifications (PTMs) like ubiquitination are essential for proper protein function and are linked to various diseases.
  • Ubiquitination is regulated by E3 ligases, which control protein degradation and other cellular functions such as protein localization and transcription.
  • UBE3A, an important E3 ligase, is studied for its role in learning, memory, and its connection to autism and neurodegenerative diseases, suggesting it plays a key role in disease progression and cognitive health.
View Article and Find Full Text PDF

Cardiomyopathy, disease of the heart muscle, is a significant contributor to heart failure. The pathogenesis of cardiomyopathy is multifactorial and involves genetic, environmental, and lifestyle factors. Identifying and characterizing novel genes that contribute to cardiac pathophysiology are crucial for understanding cardiomyopathy and effective therapies.

View Article and Find Full Text PDF

The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease.

View Article and Find Full Text PDF

Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal.

View Article and Find Full Text PDF

In Drosophila embryonic CNS, the multipotential stem cells called neuroblasts (NBs) divide by self-renewing asymmetric division and generate bipotential precursors called ganglion mother cells (GMCs). GMCs divide only once to generate two distinct post-mitotic neurons. The genes and the pathways that confer a single division potential to precursor cells or how neurons become post-mitotic are unknown.

View Article and Find Full Text PDF

Neuronal precursor cells undergo self-renewing and non-self-renewing asymmetric divisions to generate a large number of neurons of distinct identities. In Drosophila, primary precursor neuroblasts undergo a varying number of self-renewing asymmetric divisions, with one known exception, the MP2 lineage, which undergoes just one terminal asymmetric division similar to the secondary precursor cells. The mechanism and the genes that regulate the transition from self-renewing to non-self-renewing asymmetric division or the number of times a precursor divides is unknown.

View Article and Find Full Text PDF

Axon-guidance by Slit-Roundabout (Robo) signaling at the midline initially guides growth cones to synaptic targets and positions longitudinal axon tracts in discrete bundles on either side of the midline. Following the formation of commissural tracts, Slit is found also in tracts of the commissures and longitudinal connectives, the purpose of which is not clear. The Slit protein is processed into a larger N-terminal peptide and a smaller C-terminal peptide.

View Article and Find Full Text PDF

Slit proteins act as repulsive axon guidance cues by activating receptors of the Roundabout (Robo) family. During early neurogenesis in , Slit prevents the growth cones of longitudinal tract neurons from inappropriately crossing the midline, thus restricting these cells to trajectories parallel to the midline. Slit is expressed in midline glial cells, and Robo is present in longitudinal axon tracts and growth cones.

View Article and Find Full Text PDF

Asymmetric cell divisions in the central nervous system generate neurons of diverse fates. In Drosophila melanogaster, the protein Numb localizes asymmetrically to dividing neural precursor cells such that only one daughter cell inherits Numb. Numb inhibits Notch signaling in this daughter cell, resulting in a different cell fate from the Notch-induced fate in the other-Numb-negative-daughter cell.

View Article and Find Full Text PDF

Guiding axon growth cones towards their targets is a fundamental process that occurs in a developing nervous system. Several major signaling systems are involved in axon-guidance, and disruption of these systems causes axon-guidance defects. However, the specific role of the environment in which axons navigate in regulating axon-guidance has not been examined in detail.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative diseases.

View Article and Find Full Text PDF

Background: The objective of the study was to determine if community surveys, conducted 3 times over a period of 20 years in a small district of Sardinia (Italy), confirm the increase in depressive disorders reported in the recent literature.

Methods: Three community surveys were carried out on randomized samples of the same Sardinian mining area in 1988, 1998 and 2008. The surveys were conducted using the interview "Present State Examination" in 1988 (depression diagnosed with ICD-IX) and the CIDI-S in 1998 and 2008 (major depression diagnosed with ICD-X).

View Article and Find Full Text PDF

The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells.

View Article and Find Full Text PDF

Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members.

View Article and Find Full Text PDF

In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron.

View Article and Find Full Text PDF

In the CNS, the evolutionarily conserved Notch pathway regulates asymmetric cell fate specification to daughters of ganglion mother cells (GMCs). The E3 Ubiquitin ligase protein Neuralized (Neur) is thought to activate Notch-signaling by the endocytosis of Delta and the Delta-bound extracellular domain of Notch. The intracellular Notch then initiates Notch-signaling.

View Article and Find Full Text PDF

The tumor suppressor morphogen, Patched (Ptc), has an extensive homology to the Niemann-Pick-C 1 (NPC1) protein. The NPC disease is a paediatric, progressive and fatal neurodegenerative disorder thought to be due to an abnormal accumulation of cholesterol in neurons. Here, we report that patched mutant adults develop a progressive neurodegenerative disease and their brain contains membranous and lamellar inclusions.

View Article and Find Full Text PDF

In the Drosophila CNS, combinatorial, interdependent, sequential genetic programs in neuroectodermal (NE) cells, prior to the formation of neuroblasts (NBs), determine the initial identity of NBs. Temporal factors are then sequentially expressed to change the temporal identity. It is unclear at what levels this positional and temporal information integrates to determine progeny cell identity.

View Article and Find Full Text PDF

Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation.

View Article and Find Full Text PDF

At some point during the history of organismal evolution, unicellular, unipotent and mitotically active cells acquired an ability to undergo a special type of cell division called asymmetric division. By this special type of cell division, these cells could divide to generate two different progeny or to self-renew and at the same time generate a progeny that is committed to become a cell different from the mother cell. This type of cell division, which forms the basis for the functioning of totipotent or multipotent stem cells, underlies the fundamental basis for the developmental evolution of organisms.

View Article and Find Full Text PDF

Netrin and Slit signaling systems play opposing roles during the positioning of longitudinal tracts along the midline in the ventral nerve cord of Drosophila embryo. It has been hypothesized that a gradient of Slit from the midline interacts with three different Robo receptors to specify the axon tract positioning. However, no such gradient has been detected.

View Article and Find Full Text PDF

Within an axon bundle, one or two are pioneering axons and the rest are follower axons. Pioneering axons are projected first and the follower axons are projected later but follow a pioneering axon(s) pathway. It is not clear whether the pioneering axons have a guidance role for follower axons.

View Article and Find Full Text PDF

An extending axon growth cone is subjected to attractant and repellent cues. It is not clear how these growth cones discriminate the two opposing forces and select their projection paths. Here, we report that in the Drosophila nerve cord the growth cones of longitudinal tracts are subjected to attraction by the Netrin-Frazzled pathway.

View Article and Find Full Text PDF

During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch mediates this process via Mastermind (Mam).

View Article and Find Full Text PDF

In the Drosophila CNS, neuroblasts undergo self-renewing asymmetric divisions, whereas their progeny, ganglion mother cells (GMCs), divide asymmetrically to generate terminal postmitotic neurons. It is not known whether GMCs have the potential to undergo self-renewing asymmetric divisions. It is also not known how precursor cells undergo self-renewing asymmetric divisions.

View Article and Find Full Text PDF