Publications by authors named "Krishna M Sinha"

In , RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability.

View Article and Find Full Text PDF

The immune revolution that swept the field of oncology in the mid-2010s with the advent of checkpoint inhibitors has led to a paradigm shift in approaches toward adapting new cancer prevention modalities. Cancer vaccines have emerged from this era with astounding potential as a durable intervention to prevent cancers especially for patients with hereditary susceptibilities such as Lynch syndrome carriers. This review covers new insights in the immunoprevention landscape for patients living with Lynch syndrome including highlights ranging from clinical trials exploring the use of chemoprevention agents to boost immune cellularity to investigative studies using novel vaccine approaches to induce long-term antitumor immunity.

View Article and Find Full Text PDF

Background: Microsatellite instability (MSI) secondary to mismatch repair (MMR) deficiency is characterized by insertions and deletions (indels) in short DNA sequences across the genome. These indels can generate neoantigens, which are ideal targets for precision immune interception. However, current neoantigen databases lack information on neoantigens arising from coding microsatellites.

View Article and Find Full Text PDF

The coming of age for cancer treatment has experienced exponential growth in the last decade with the addition of immunotherapy as the fourth pillar to the fundamentals of cancer treatment-chemotherapy, surgery, and radiation-taking oncology to an astounding new frontier. In this time, rapid developments in computational biology coupled with immunology have led to the exploration of priming the host immune system through vaccination to prevent and treat certain subsets of cancer such as melanoma and hereditary colorectal cancer. By targeting the immune system through tumor-specific antigens-namely, neoantigens (neoAgs)-the future of cancer prevention may lie within arm's reach by employing neoAg vaccines as an immune-preventive modality for hereditary cancer syndromes like Lynch syndrome.

View Article and Find Full Text PDF
Article Synopsis
  • Lynch syndrome (LS) carriers develop certain types of tumors characterized by high rates of neoantigens, but information on targetable neoantigens from precancerous lesions is lacking, which is important for vaccine development.
  • Researchers sequenced genetic data from various stages of colorectal lesions in LS carriers to identify and rank the top 100 mutated neoantigens, validating their findings using specific laboratory assays.
  • The findings showed that while cancers and advanced precancers have numerous neoantigens, precancers exhibit fewer, with a significant proportion of the predicted neoantigens being able to prompt immune responses, suggesting potential for developing targeted vaccines against LS-related precancers and early-stage cancers.
View Article and Find Full Text PDF
Article Synopsis
  • Lynch syndrome (LS) is a hereditary condition that increases the risk of colorectal and endometrial cancers, and this study explores the effects of a 12-month aerobic exercise program on LS patients' immune systems.
  • The trial involved 21 LS patients who participated in cycling classes three times a week for a year, and the results showed significant improvements in cardiorespiratory fitness and reduced inflammation markers compared to a control group.
  • The exercise group experienced changes in immune cell profiles in their colon, suggesting that regular exercise may help lower cancer risk in LS patients by affecting their immune system.
View Article and Find Full Text PDF

Lynch Syndrome (LS) is one of the most common hereditary cancer syndromes, and is caused by mutations in one of the four DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6 and PMS2. Tumors developed by LS carriers display high levels of microsatellite instability, which leads to the accumulation of large numbers of mutations, among which frameshift insertion/deletions (indels) within microsatellite (MS) loci are the most common. As a result, MMR-deficient (MMRd) cells generate increased rates of tumor-specific neoantigens (neoAgs) that can be recognized by the immune system to activate cancer cell killing.

View Article and Find Full Text PDF

Background: Recent clinical trial data from Lynch Syndrome (LS) carriers demonstrated that naproxen administered for 6-months is a safe primary chemoprevention that promotes activation of different resident immune cell types without increasing lymphoid cellularity. While intriguing, the precise immune cell types enriched by naproxen remained unanswered. Here, we have utilized cutting-edge technology to elucidate the immune cell types activated by naproxen in mucosal tissue of LS patients.

View Article and Find Full Text PDF

In previous study, we showed that nucleolar protein 66 (NO66) is a chromatin modifier and negatively regulates Osterix activity as well as mesenchymal progenitor differentiation. Genetic ablation of the 66 () gene in cells of the 1-expressing mesenchymal lineage leads to acceleration of osteochondrogenic differentiation and a larger skeleton in adult mice, whereas mesenchyme-specific overexpression of 66 inhibits osteochondrogenesis resulting in dwarfism and osteopenia. However, the impact of NO66 overexpression in cells of the osteoblast lineage remains largely undefined.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains the third most common cancer in the US with 15% of cases displaying Microsatellite Instability (MSI) secondary to Lynch Syndrome (LS) or somatic hypermethylation of the MLH1 promoter. A cohort of rhesus macaques from our institution developed spontaneous mismatch repair deficient (MMRd) CRC with a notable fraction harboring a pathogenic germline mutation in MLH1 (c.1029C View Article and Find Full Text PDF

Cyclic dinucleotides are second messengers that are present in all the three domains of life, bacteria, archaea, and eukaryotes. These dinucleotides have important physiological and pathophysiological roles in bacteria. Cyclic di-AMP (cdA) is one of the recently discovered cyclic dinucleotides present predominantly in gram-positive bacteria.

View Article and Find Full Text PDF

No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer syndrome, which results in the development of hundreds of adenomatous polyps carpeting the gastrointestinal tract. NSAIDs have reduced polyp burden in patients with FAP and synthetic rexinoids have demonstrated the ability to modulate cytokine-mediated inflammation and WNT signaling. This study examined the use of the combination of an NSAID (sulindac) and a rexinoid (bexarotene) as a durable approach for reducing FAP colonic polyposis to prevent colorectal cancer development.

View Article and Find Full Text PDF

Lynch syndrome is the most common cause of hereditary colorectal cancer and is secondary to germline alterations in one of four DNA mismatch repair (MMR) genes. Here we aimed to provide novel insights into the initiation of MMR-deficient (MMRd) colorectal carcinogenesis by characterizing the expression profile of MMRd intestinal stem cells (ISC). A tissue-specific MMRd mouse model (Villin-Cre;Msh2 ) was crossed with a reporter mouse () to trace and isolate ISCs (Lgr5+) using flow cytometry.

View Article and Find Full Text PDF

The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated.

View Article and Find Full Text PDF

Although the mouse strain Murphy Roths Large (MRL/MpJ) possesses high regenerative potential, the mechanism of tissue regeneration, including skeletal muscle, in MRL/MpJ mice after injury is still unclear. Our previous studies have shown that muscle-derived stem/progenitor cell (MDSPC) function is significantly enhanced in MRL/MpJ mice when compared with MDSPCs isolated from age-matched wild-type (WT) mice. Using mass spectrometry-based proteomic analysis, we identified increased expression of hypoxia-inducible factor (HIF) 1α target genes (expression of glycolytic factors and antioxidants) in sera from MRL/MpJ mice compared with WT mice.

View Article and Find Full Text PDF

Epigenetic changes that cause dysregulated gene expression during progression of androgen-independent prostate cancer (PCa) and metastatic skeletal lesions remain elusive. Here, we explored the role of histone demethylase NO66 in the pathogenesis of PCa and bone metastasis-related skeletal lesions. Tissue and cDNA microarrays of PCa were analyzed for NO66 mRNA and protein levels.

View Article and Find Full Text PDF

Medullary thyroid carcinoma (MTC) originates from the C cells of the thyroid gland, which secrete calcitonin. Lymph node and distant metastases are frequently present at diagnosis. Activating mutations of , a driver oncogene in MTC that encodes a tyrosine kinase receptor, prevents apoptosis through inhibition of ATF4, a key transcriptional regulator of endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined.

View Article and Find Full Text PDF

The Sp7/Osterix transcription factor is essential for bone development. Mutations of the Sp7 gene in humans are associated with craniofacial anomalies and osteogenesis imperfecta. However, the role of Sp7 in embryonic tooth development remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • RET is a protein that helps cells survive and is linked to a hereditary cancer called multiple endocrine neoplasia type 2.
  • Researchers found that when they reduced RET in certain cancer cells, a stress-related factor called ATF4 increased, leading to more cell death.
  • RET works in the nucleus and prevents ATF4 from activating genes that cause cell death by changing the way ATF4 behaves through a process called phosphorylation.
View Article and Find Full Text PDF

Cyclic di-AMP is a recently discovered signaling molecule which regulates various aspects of bacterial physiology and virulence. Here we report the characterization of c-di-AMP synthesizing and hydrolyzing proteins from Mycobacterium tuberculosis. Recombinant Rv3586 (MtbDisA) can synthesize c-di-AMP from ATP through the diadenylate cyclase activity.

View Article and Find Full Text PDF

Commitment of Runx2-expressing precursor osteoblasts to functional osteoblasts and then to osteocytes is triggered by Osterix (Osx), which activates its target genes in those cells during bone formation. It is not yet known whether Osx has a role in remodeling the chromatin architecture of its target genes during the transition from preosteoblast to osteoblast. In testing the hypothesis that Osx is indispensable for active chromatin architecture, we first showed that in Osx-null calvarial cells occupancy of the transcriptional activators, including lysine 4 methyl transferase (Wdr5), c-Myc, and H2A.

View Article and Find Full Text PDF

Osterix (Osx) is an osteoblast-specific transcriptional factor and is required for osteoblast differentiation and bone formation. A JmjC domain-containing protein NO66 was previously found to participate in regulation of Osx transcriptional activity and plays an important role in osteoblast differentiation through interaction with Osx. Here, we report the crystal structure of NO66 forming in a functional tetramer.

View Article and Find Full Text PDF

Osterix (Osx) is an osteoblast-specific transcription factor which is essential for bone formation. MicroRNAs (miRNAs) have been previously shown to be involved in osteogenesis. However, it is unclear whether Osx is involved in the regulation of miRNA expression.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoh00tm8ael6n5i3ooertljphmlt185r8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once