Black Bengal goats possess a rich source of rumen microbiota that helps them to adapt for the better utilization of plant biomaterial into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiota. Therefore the study was designed in order to explore the taxonomic profile of rumen microbial communities and potential biomass degradation enzymes present in the rumen of back Bengal goat using Illumina Nextseq-500 platform. A total of 83.
View Article and Find Full Text PDFFeed conversion ratio (FCR) is an economically important trait in broilers and feed accounts for a significant proportion of the costs involved in broiler production. To explore the contribution of functional variants to FCR trait, we analyzed coding and non-coding single-nucleotide variants (SNVs) across the genome by exome sequencing in seven pairs of full-sibs broilers with divergent FCR and with a sequence coverage at an average depth of fourfold. We identified 192,119 high-quality SNVs, including 30,380 coding SNVs (cSNVs) in the experimental population.
View Article and Find Full Text PDFWe performed transcriptome sequencing of canine retinal tissue by 454 GS-FLX and Ion Torrent PGM platforms. RNA-Seq analysis by CLC Genomics Workbench mapped expression of 10,360 genes. Gene ontology analysis of retinal transcriptome revealed abundance of transcripts known to be involved in vision associated processes.
View Article and Find Full Text PDFProgressive retinal atrophy (PRA) is one of the major causes of retinal photoreceptor cell degeneration in canines. The inheritance pattern of PRA is autosomal recessive and genetically heterogeneous. Here, using targeted sequencing technology, we have performed exome sequencing of 10 PRA-affected (Spitz=7, Cocker Spaniel=1, Lhasa Aphso=1 and Spitz-Labrador cross breed=1) and 6 normal (Spitz=5, Cocker Spaniel=1) dogs.
View Article and Find Full Text PDFUnderstanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis.
View Article and Find Full Text PDFWe present here the whole-genome sequences of Listeria monocytogenes from Ganges River water, agricultural soil, and human clinical samples from Varanasi, India, which will be used for a comparative analysis.
View Article and Find Full Text PDFBuffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs.
View Article and Find Full Text PDFIn the milk industry in India, buffalo breeds are most commonly used for milk production. Efficiency of fiber digestion in ruminants is critical for animal productivity. Bacteria play an important role in fiber digestion and utilization.
View Article and Find Full Text PDFMicrobial profiling of metagenome communities have been studied extensively using MG-RAST and other related metagenome annotation databases. Although, database based taxonomic profiling provides snapshots of the metagenome architecture, their reliability needs to be validated through more accurate methods. Here, we performed qPCR based absolute quantitation of selected rumen microbes in the liquid and solid fraction of the rumen fluid of river buffalo adapted to varying proportion of concentrate to green or dry roughages and compared with the MG-RAST based annotation of the metagenomes sequences of 16S r-DNA amplicons and high throughput shotgun sequencing.
View Article and Find Full Text PDFThe complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial proteins, short chain fatty acids and gases. In this study, metagenomic approaches were used to study the microbial populations and metabolic potential of the microbial community. DNA was extracted from Surti Buffalo rumen samples (four treatments diet) and sequenced separately using a 454 GS FLX Titanium system.
View Article and Find Full Text PDFMethane emissions from ruminant livestock are considered to be one of the more potent forms of greenhouse gases contributing to global warming. Many strategies to reduce emissions are targeting the methanogens that inhabit the rumen, but such an approach can only be successful if it targets all the major groups of ruminant methanogens. Therefore, basic knowledge of the diversity of these microbes in breeds of buffalo is required.
View Article and Find Full Text PDFBLAD is an autosomal recessive genetic disease that affects Holstein-Friesian (HF) cattle worldwide. It is a disease characterized by a reduced expression of the adhesion molecules on neutrophils. The disease is caused by a mutation that replaces adenine at 383 with guanine, which causes an amino acid change from aspartic acid to glycine.
View Article and Find Full Text PDFThe present study investigated the occurrence of 2 autosomal recessive genetic diseases, bovine citrullinaemia and deficiency of uridine monophosphate synthase (DUMPS), in Indian Holstein cattle. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was performed on a group of 642 animals, mainly HF and HF crossbred cattle, to identify carriers of these diseases. None of the animals were carriers of citrullinaemia or DUMPS.
View Article and Find Full Text PDF