Publications by authors named "Krishna M Chauhan"

A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells.

View Article and Find Full Text PDF

The stability and activity of the p53 tumor suppressor protein are tightly regulated by various posttranslational modifications, including SUMOylation. p53 can be modified by both SUMO1 and SUMO2, although how SUMOylation regulates p53 activity is still obscure. Whether p53 activity is directly regulated by deSUMOylation is also unclear.

View Article and Find Full Text PDF

Posttranslational modifications play a crucial role in the proper control of c-Myc protein stability and activity. c-Myc can be modified by small ubiquitin-like modifier (SUMO). However, how SUMOylation regulates c-Myc stability and activity remains to be elucidated.

View Article and Find Full Text PDF

MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities.

View Article and Find Full Text PDF

Mutations in the tumor suppressor gene TP53 contribute to the development of approximately half of all human cancers. One mechanism by which mutant p53 (mtp53) acts is through interaction with other transcription factors, which can either enhance or repress the transcription of their target genes. Mtp53 preferentially interacts with the erythroblastosis virus E26 oncogene homologue 2 (ETS2), an ETS transcription factor, and increases its protein stability.

View Article and Find Full Text PDF

Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP-dependent protein activity and cell invasion.

View Article and Find Full Text PDF