Publications by authors named "Krishna Kumar Selvaraj"

In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R = 0.

View Article and Find Full Text PDF

Aging process is one of the most important factors that markedly reduces bioaccessibility and bioavailability (bioac-bioav) of organic contaminants. However, only few data on comparison of the effects of laboratory artificial aging (LAA) and outdoor environmental aging (OEA) processes on nitrated polycyclic aromatic hydrocarbons (NPAHs) bioac-bioav are available. In the current study, oral bioac-bioav of NPAHs in LAA and OEA soils (aging time intervals: 0, 45, 90, 120 and 150 d) were measured by in vitro traditional Fed ORganic Estimation human Simulation Test (FOREhST) and Tenax improved FOREhST (TI-FOREhST) methods, and in vivo mouse model.

View Article and Find Full Text PDF

Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms.

View Article and Find Full Text PDF

The improved in vitro gastrointestinal simulation methods, with the addition of the adsorption sink, are considered as a promising tool for predicting the bioaccessibility of contaminants. However, the problem associated with the recovery of the adsorption sink from the complex matrix needs more understand. Although previous studies tried to solve this shortcoming by using the containers (a vessel to hold the adsorption sink), there is no systematic comparison study on the impact of containers on bioaccessibility till now, especially for nitro-polycyclic aromatic hydrocarbons (nitro-PAHs).

View Article and Find Full Text PDF

Perfluorinated compounds (PFCs) are a group of emerging contaminants still less reported in rivers, particularly southern India. Therefore, we investigated the fate of 13 PFCs in three major rivers in southern India during post-monsoon and summer seasons. Twelve PFCs were detected, with an average total PFCs of 1853 ± 1463 pg/l.

View Article and Find Full Text PDF

Triclocarban and benzotriazole ultraviolet stabilizers (BUVSs) are listed as high production volume synthetic chemicals, used extensively in personal care products. Many of these chemicals persist in the aquatic environment as micropollutants. Knowledge on their fate in freshwater ecosystems is still lacking, especially in the Indian Rivers.

View Article and Find Full Text PDF
Article Synopsis
  • Six phthalic acid esters (PAEs) were analyzed in urine samples from three districts in Tamil Nadu and Pondicherry, revealing variations based on gender, age, and location.
  • Bis(2-ethylhexyl) phthalate (DEHP) was the most prevalent PAE, with consistent recovery rates from urine extraction.
  • The study suggests urine is a valuable biomarker for assessing human exposure to PAEs, with significant findings from molecular docking indicating strong interactions of PAEs with microbial receptors.
View Article and Find Full Text PDF

Usage of phthalates as plasticizers has resulted in worldwide occurrence and is becoming a serious concern to human health and environment. However, studies on phthalates in Indian atmosphere are lacking. Therefore, we studied the spatio-temporal trends of six major phthalates in Tamil Nadu, southern India, using passive air samplers.

View Article and Find Full Text PDF

Phthalate esters are well known for their environmental contamination and toxicological effects as "endocrine disruptors." In this study, environmental levels of phthalate esters and ecotoxicological risk assessments were performed in one of the major rivers in India, the Kaveri. Water and sediment samples were collected during 2010-2012 representing the major stretch of the river and extracted by solid-phase and ultrasonic methods, respectively, and analyzed for six major phthalates by using a gas chromatograph-mass spectrometer.

View Article and Find Full Text PDF

Parabens, the antimicrobial preservatives used in cosmetics, food and pharmaceuticals, are often detected in the aquatic environment. Generally, sewage treatment plants (STPs) receive community sewage containing parabens, which are ultimately released into streams/rivers. In this study, bacteria in STP effluents were evaluated for their resistance to parabens.

View Article and Find Full Text PDF

Water samples from three rivers in southern India were analyzed for octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) residues by gas chromatography and mass spectrometry. The concentrations of OP, NP and BPA ranged from ND (not detected) to 16.3 ng/L, ND to 2200 ng/L, and 2.

View Article and Find Full Text PDF

Pharmaceutical concentration data for Indian surface waters are currently scarce. Sewage often enters Indian rivers without prior treatment, and so previously reported environmental concentrations from regions with routinely implemented sewage treatment cannot simply be used to predict concentrations in Indian surface water. Improved knowledge of pharmaceutical concentrations in Indian waters would enable determination of potential risks posed to aquatic wildlife and human health in this region.

View Article and Find Full Text PDF