Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis.
View Article and Find Full Text PDFWe show that the forces generated by active enzyme molecules are strong enough to influence the dynamics of their surroundings under artificial crowded environments. We measured the behavior of polymer microparticles in a quasi-two-dimensional system under aqueous environment, at various area fraction values of particles. In the presence of enzymatic activity, not only was the diffusion of the suspended particles enhanced at shorter time-scales, but the system also showed a transition from subdiffusive to diffusive dynamics at longer time-scale limits.
View Article and Find Full Text PDFProtein-coated microbubbles have become one of the emerging platforms in biomedical research as theranostic agents. In recent years, microbubbles have been extensively used as ultrasound contrast agents and carriers of molecular cargoes, pertaining to which several studies have focused on tuning the properties of these bubbles to achieve a higher degree of biocompatibility and extended stability. Synthesis of microbubbles has so far been traditionally carried out with pre-heated proteins like bovine serum albumin (BSA) as shell coatings, owing to the ease in making BSA crosslinked structures through disulfide bridge formation.
View Article and Find Full Text PDFWhile microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation.
View Article and Find Full Text PDFThe progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility.
View Article and Find Full Text PDFThe field of active matter is a nascent area of research in soft condensed matter physics, which is drawing on the expertise of researchers from diverse disciplines. Small scale active particles-both inorganic and biological-display non-trivial emergent dynamics and interactions that could help us understand complex biological processes and phenomena. Recently, using microfluidic technologies, several research groups have performed important experimental and theoretical studies to understand the behavior of self-propelled particles and molecular active matter within confined environments-to glean a fundamental understanding of the cellular processes occurring under ultra-low Reynolds number conditions.
View Article and Find Full Text PDFGaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products.
View Article and Find Full Text PDFMicrobubbles are intravascular contrast agents clinically used in diagnostic sonography, echocardiography, and radiology imaging applications. However, up to date, the idea of creating microbubbles with multiple functionalities (e.g.
View Article and Find Full Text PDFCollective and emergent behaviors of active colloids provide useful insights into the statistical physics of out-of-equilibrium systems. Colloidal suspensions containing microscopic active swimmers have been intensively studied to understand the principles of energy transfer at low Reynolds number conditions. Studies on active enzymes and Ångström-sized organometallic catalysts have demonstrated that energy can even be transferred by molecules to their surroundings, thereby influencing the overall dynamics of the systems substantially.
View Article and Find Full Text PDFSelf-propelled, synthetic active matters that transduce chemical energy into mechanical motion are examples of biomimetic nonequilibrium systems. They are of great current interest, with potential applications in nanomachinery, nanoscale assembly, fluidics, and chemical/biochemical sensing. Many of the physical challenges associated with generating motility on the micro- and nanoscale have recently been overcome, leading to the first generation of autonomous motors and pumps on scales ranging from microns to nanometers.
View Article and Find Full Text PDFWhile momentum transfer from active particles to their immediate surroundings has been studied for both synthetic and biological micron-scale systems, a similar phenomenon was presumed unlikely to exist at smaller length scales due to the dominance of viscosity in the ultralow Reynolds number regime. Using diffusion NMR spectroscopy, we studied the motion of two passive tracers--tetramethylsilane and benzene--dissolved in an organic solution of active Grubbs catalyst. Significant enhancements in diffusion were observed for both the tracers and the catalyst as a function of reaction rate.
View Article and Find Full Text PDFWe demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate.
View Article and Find Full Text PDFWe report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor.
View Article and Find Full Text PDFWe introduce a new lithographic method for the generation of 2D patterns of composite nanoparticles (NPs) of Ag and Au by taking recourse to combine top-down and bottom-up approaches. Micrometer-scale and submicrometer-scale patterned Ag foils of commercially available compact disks (CDs) and digital versatile disks (DVDs), respectively, were used as templates. The galvanic replacement reaction of Ag by HAuCl(4) in the presence of the dye coatings on the foils led to the formation of patterned NP composites of Ag and Au, in addition to the formation of AgCl.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2010
Gold nanoparticle (Au NP) catalyzed decomposition of alkaline hydrogen peroxide has been utilized in driving chemical locomotives in a liquid. Au NPs deposited on spherical micron sized polymer resin beads catalyzed the decomposition of H(2)O(2) in the pH range 9.1-10.
View Article and Find Full Text PDFThe motion of micron-sized catalytic polymer beads coated with thin film or nanoparticle form of Ni in aqueous H(2)O(2) is reported herein. In the absence of any magnetic field, the beads moved vertically upward in the medium, owing to sufficient bubbles deposited on them following catalytic decomposition of H(2)O(2) by Ni. However, in the presence of an external magnetic field (perpendicular to the direction of motion), angular deviation in the motion is observed, with the deviations increasing with the strength of the field.
View Article and Find Full Text PDF