Publications by authors named "Krishna K Ghosh"

The substitution of semiconductor quantum dots (QDs) by a small number of transition-metal ions with magnetic properties gives rise to magnetic-doped semiconductors. With a balance of optical and magnetic properties, these magnetic semiconductors are widely used in spintronics, bioimaging and magnetic resonance imaging (MRI) applications. To facilitate their usage in bio-applications, it is critical to synthesize water-soluble magnetic QDs with a stabilized structure while maintaining their optical and magnetic properties.

View Article and Find Full Text PDF

This paper presents a comprehensive overview of the potential applications for Photo-Acoustic (PA) imaging employing functional nanoparticles. The exploration begins with an introduction to nanotechnology and nanomaterials, highlighting the advancements in these fields and their crucial role in shaping the future. A detailed discussion of the various types of nanomaterials and their functional properties sets the stage for a thorough examination of the fundamentals of the PA effect.

View Article and Find Full Text PDF
Article Synopsis
  • Reactive oxygen species (ROS) are molecules that contain oxygen and one or more unpaired electrons, contributing to cellular processes but can cause damage when produced in excess, a condition known as oxidative stress.
  • Factors like UV radiation, aerobic respiration, and inflammation trigger ROS production, leading to cellular damage associated with conditions like aging, cancer, and diabetes.
  • Mitochondrial ROS play a crucial role in regulating immune responses and other physiological functions, and the review explores how pathogens manipulate these ROS for immune evasion, as well as potential therapies targeting mt-ROS in infectious diseases.
View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) have been used in a variety of applications ranging from optoelectronics to biodiagnostic fields, primarily due to their size dependent fluorescent nature. CdSe nanocrystals (NCs) are generally synthesized via a hot injection method in an organic solvent. However, such NCs are insoluble in water and therefore preclude the direct usage toward biological systems.

View Article and Find Full Text PDF

One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria.

View Article and Find Full Text PDF

Surface functionalization has a prominent influence on tuning/manipulating the physicochemical properties of nanometer scaled materials. Ultrasmall sized nanoclusters with very few atoms have received enormous attention due to their bright fluorescence, biocompatibility, lower toxicity, good colloidal stability and strong photostability. These properties make them suitable for diagnostic applications.

View Article and Find Full Text PDF

Functional metal nanomaterials, especially in the nanocluster (NC) size regime, with strong fluorescence, aqueous colloidal stability, and low toxicity, necessitate their application potential in biology and environmental science. Here, we successfully report a simple cost-effective method for red-/green-color-emitting protein/amino-acid-mediated Cu NCs in an aqueous medium. As-synthesized Cu NCs were characterized through UV-Vis absorption spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence, dynamic light scattering, zeta potential, transmission electron microscopy and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Positron emission tomography (PET) is an extensively used nuclear functional imaging technique, especially for central nervous system (CNS) and oncological disorders. Currently, drug development is a lengthy and costly pursuit. Imaging with PET radiotracers could be an effective way to hasten drug discovery and advancement, because it facilitates the monitoring of key facets, such as receptor occupancy quantification, drug biodistribution, pharmacokinetic (PK) analyses, validation of target engagement, treatment monitoring, and measurement of neurotransmitter concentrations.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) modelled by lateral fluid percussion-induction (LFPI) in rats is a widely used experimental rodent model to explore and understand the underlying cellular and molecular alterations in the brain caused by TBI in humans. Current improvements in imaging with positron emission tomography (PET) have made it possible to map certain features of TBI-induced cellular and molecular changes equally in humans and animals. The PET imaging technique is an apt supplement to nanotheranostic-based treatment alternatives that are emerging to tackle TBI.

View Article and Find Full Text PDF

Pancreatic beta cells are important in blood glucose level regulation. As type 1 and 2 diabetes are getting prevalent worldwide, we need to explore new methods for early detection of beta cell-related afflictions. Using bioimaging techniques to measure beta cell mass is crucial because a decrease in beta cell density is seen in diseases such as diabetes and thus can be a new way of diagnosis for such diseases.

View Article and Find Full Text PDF

Positron emission tomography (PET) offers the study of biochemical, physiological, and pharmacological functions at a cellular and molecular level. The performance of a PET study mostly depends on the used radiotracer of interest. However, the development of a novel PET tracer is very difficult, as it is required to fulfill a lot of important criteria.

View Article and Find Full Text PDF

Positron emission tomography (PET)-magnetic resonance (MR) or single photon emission computed tomography (SPECT)-MR hybrid imaging is being used in daily clinical practice. Due to its advantages over stand-alone PET, SPECT or MR imaging, in many areas such as oncology, the demand for hybrid imaging techniques is increasing dramatically. The use of multimodal imaging probes or biomarkers in a single molecule or particle to characterize the imaging subjects such as disease tissues certainly provides us with more accurate diagnosis and promotes therapeutic accuracy.

View Article and Find Full Text PDF

With primitive approaches, the diagnosis and therapy were operated at the cellular, molecular, or even at the genetic level. As the diagnostic techniques are more concentrated towards molecular level, multi modal imaging becomes specifically essential. Multi-modal imaging has extensive applications in clinical as well as in pre-clinical studies.

View Article and Find Full Text PDF

The aim of this study on dopamine transporter binding by [F]FE-PE2I and PET was to describe an image-derived approach using reference tissue models: the Logan DVR approach and simplified reference tissue model (SRTM), the features of which were simple to operate and precise in the measurements. Using the approach, the authors sought to obtain binding images and parameters. [F]FE-PE2I and dynamic PET as well as an MRI was performed on three rhesus monkeys, and metabolite corrected arterial plasma inputs were obtained.

View Article and Find Full Text PDF

A low-toxicity nucleus staining fluorescent probe, , was developed for real time mitosis imaging in live cells. was identified by unbiased high-throughput imaging-based screening of a new xanthone library (AX). Unlike the conventional Hoechst dye, the low toxicity of allows long term monitoring of cell division over more than one cell cycle.

View Article and Find Full Text PDF

The development of a fluorescent probe capable of detecting and distinguishing the wide diversity of G-quadruplex structures is particularly challenging. Herein, we report a novel BODIPY-based fluorescent sensor (GQR) that shows unprecedented selectivity to parallel-stranded G-quadruplexes with exposed ends and four medium grooves. Mechanistic studies suggest that GQR associates with G-quadruplex grooves close to the end of the tetrad core, which may explain the dye's specificity to only a subset of parallel structures.

View Article and Find Full Text PDF
Article Synopsis
  • The adaptability of the BODIPY scaffold for solid-phase chemistry has been debated, limiting its diversification.
  • This research presents the first successful solid-phase synthesis of a high-purity BODIPY library.
  • The library was tested on various proteins, leading to the discovery of a fluorescent sensor (Ig Orange), with binding confirmed through SPR experiments.
View Article and Find Full Text PDF

We report the first solid phase synthesis of a xanthone library CX and its application to embryonic stem cell probe development. The CX library was further derivatised with an activated ester resin to provide an acetylated CX (CXAC) library. Screening of these libraries led to the discovery of a novel fluorescent mESC probe, CDb8.

View Article and Find Full Text PDF

The colorimetric response patterns of pH indicators and boronic acids ensemble array were used to analyze serial concentrations of mono-, disaccharides quantitatively. Furthermore, this ensemble array was successfully applied to quantify the sugar content in clinically used saline solutions.

View Article and Find Full Text PDF

We studied the morphology of bipolar cells in fixed vertical tissue sections (slices) of the mouse retina by injecting the cells with Lucifer Yellow and Neurobiotin. Nine different cone bipolar cell types and one rod bipolar cell type were distinguished. The major criteria for classifying the cells were the branching pattern and stratification level of their axon terminals in the inner plexiform layer (IPL).

View Article and Find Full Text PDF

With the ever-growing number of transgenic mice being used in vision research, a precise knowledge of the cellular organization of the mouse retina is required. As with the cat, rabbit, rat, and primate retinae, as many as 10 cone bipolar types and one rod bipolar type can be expected to exist in the mouse retina; however, they still have to be defined. In the current study, several immunocytochemical markers were applied to sections of mouse retina, and the labeling of bipolar cells was studied using confocal microscopy and electron microscopy.

View Article and Find Full Text PDF