Silver-doped-titanium dioxide nanoparticles supported on Fuller's earth, prepared by the sol-gel method, were characterized with XRD, TGA, zeta potential, SEM, EDX, TEM, XPS, photoluminescence and UV-DRS measurements. The material, Ag-TiO-Fuller's earth (AgTF), was tested for photocatalytic activity concerning the degradation of rhodamine B (RhB) and methylene blue (MB) in aqueous solution under visible light irradiation with pH, catalyst dosage, and dye concentration as the process variables. The degradation kinetics indicated pseudo-first-order kinetics with rate constant of (i) 0.
View Article and Find Full Text PDFThis study explores the possibility of developing an eco-friendly adsorbent for effective remediation of groundwater fluoride, a well-known health hazard affecting more than 25 nations on the various continents. A facile and milder approach has been adopted to synthesize chitosan-modified ZnO/ZnFeO nanocomposites. The synthesized materials have been characterized by different spectroscopic, microscopic, and diffractometric techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2016
Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2008
The feasibility of using two important and common clay minerals, kaolinite and montmorillonite, as adsorbents for removal of toxic heavy metals has been reviewed. A good number of works have been reported where the modifications of these natural clays were done to carry the adsorption of metals from aqueous solutions. The modification was predominantly done by pillaring with various polyoxy cations of Zr4+, Al3+, Si4+, Ti4+, Fe3+, Cr3+or Ga3+, etc.
View Article and Find Full Text PDFChlorophenols in water are resistant to biological oxidation and they have to be destroyed by chemical oxidation. In the present work, Fe(III), Co(II) and Ni(II) incorporated MCM41 mesoporous solids were used as catalysts for oxidation of 2,4,6-trichlorophenol in water with or without the oxidant, H(2)O(2). The catalysts were prepared by impregnation and were characterized by XRD and FTIR measurements.
View Article and Find Full Text PDF