Publications by authors named "Krishna Chaitanya Pavani"

In a previous study we found that the levels of the novel microRNAs (miRNAs) bta-novel-miR-117 bta-novel-miR-234 and bta-novel-miR-417 (P < 0.001) are significantly up-regulated in extracellular vesicles (EVs) in the culture medium of degenerating embryos compared to blastocysts. Because the functions of these novel miRNAs are still unknown, we investigated their regulatory roles during bovine blastocyst development by adding their mimics and inhibitors to the culture medium.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) contain microRNAs (miRNAs), which are important regulators of embryonic development. Nevertheless, little is known about the precise molecular processes controlling blastocyst development and quality. In a previous study, we identified bta-miR-665 as one of the miRNAs more abundantly present in extracellular vesicles of embryo-conditioned culture media of blastocysts compared to degenerate ones.

View Article and Find Full Text PDF

Background: Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent).

Methods: Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage.

View Article and Find Full Text PDF
Article Synopsis
  • Circular RNAs (circRNAs) play important roles in biological processes and their presence in bovine preimplantation embryos has not been extensively studied until now.
  • This study identified 25,700 circRNAs in bovine blastocysts, with 12,630 being uniquely expressed and more alternative splicing events occurring in blastocysts compared to degenerated embryos.
  • The research also created a circRNA-miRNA-mRNA network, suggesting that specific circRNAs influence the development of preimplantation embryos and that knocking down circAGO2 can hinder blastocyst hatching.
View Article and Find Full Text PDF

Small non-coding RNAs (sncRNAs) present in the conditioned medium (CM) of bovine preimplantation embryos are potential noninvasive biomarkers for assessing embryo quality. Accurate quantification of sncRNA levels in the spent CM is of utmost importance in this regard. RT-qPCR is considered as the gold standard for quantifying RNA.

View Article and Find Full Text PDF

High levels of reactive oxygen species (ROS) derived from in vitro conditions compromise oocyte quality and subsequent polyspermy prevention by the zona and membrane block. Antioxidant supplementation, like lycopene, during in vitro maturation (IVM) mitigates ROS effects, yet, its efficacy in blocking polyspermy remains uncertain. This study aims to evaluate the effect of lycopene supplementation during IVM on oocyte maturation, fertilization, and developmental parameters.

View Article and Find Full Text PDF

Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), which can be carried inside extracellular vesicles (EVs), play a crucial role in regulating embryo development up to the blastocyst stage. Yet, the molecular mechanisms underlying blastocyst development and quality are largely unknown. Recently, our group identified 69 differentially expressed miRNAs in extracellular vesicles (EVs) isolated from culture medium conditioned by bovine embryos that either developed to the blastocyst stage or did not (non-blastocysts).

View Article and Find Full Text PDF

Cumulus expansion is an important indicator of oocyte maturation and has been suggested to be indicative of greater oocyte developmental capacity. Although multiple methods have been described to assess cumulus expansion, none of them is considered a gold standard. Additionally, these methods are subjective and time-consuming.

View Article and Find Full Text PDF

Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons.

View Article and Find Full Text PDF

In vivo-matured oocytes exhibit higher developmental competence than those matured in vitro but mimicking the in vivo environment by in vitro conditions has been challenging. Until now, conventional two-dimensional (2D) systems have been used for in vitro maturation of bovine cumulus-oocytes-complexes (COCs). However, using such systems present certain limitations.

View Article and Find Full Text PDF

While human in vitro embryo production is generally performed individually, animal models have shown that culturing embryos in groups improves blastocyst yield and quality. Paracrine embryotrophins could be responsible for this improved embryo development, but their identity remains largely unknown. We hypothesize that supplementation of embryotrophic proteins to a culture medium could be the key to improve individual embryo production.

View Article and Find Full Text PDF

SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium.

View Article and Find Full Text PDF

Bovine embryos are typically cultured at reduced oxygen tension to lower the impact of oxidative stress on embryo development. However, oocyte in vitro maturation (IVM) is performed at atmospheric oxygen tension since low oxygen during maturation has a negative impact on oocyte developmental competence. Lycopene, a carotenoid, acts as a powerful antioxidant and may protect the oocyte against oxidative stress during maturation at atmospheric oxygen conditions.

View Article and Find Full Text PDF

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that places a heavy strain on public health. Host susceptibility to Mtb is modulated by macrophages, which regulate the balance between cell apoptosis and necrosis. However, the role of molecular switches that modulate apoptosis and necrosis during Mtb infection remains unclear.

View Article and Find Full Text PDF

We evaluated the effect of supplementation of different concentrations of bovine follicular fluid (FF) during in vitro maturation (IVM) on oocyte development and blastocyst quality in group and individual culture conditions. To do so, in vitro maturation medium (TCM-199 with 20 ng/mL epidermal growth factor and 50 μg/mL gentamycin) was supplemented with 0 (control), 1, 5, or 10% of FF. Follicular fluid was collected from slaughterhouse-derived ovaries, selecting follicles between 12 and 20 mm in diameter.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF.

View Article and Find Full Text PDF

Tuberculosis (TB) is an infectious disease caused by that poses threats to the public. survives in macrophages by escaping from immune surveillance and clearance, which exacerbates the bacterial proliferation. However, the molecular mechanisms of this immune escape have not yet been fully understood.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been identified as one of the communication mechanisms amongst embryos. They are secreted into the embryo culture medium and, as such, represent a source of novel biomarkers for identifying the quality of cells and embryos. However, only small amounts of embryo-conditioned medium are available, which represents a challenge for EV enrichment.

View Article and Find Full Text PDF

In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases ().

View Article and Find Full Text PDF

Recently, secreted microRNAs (miRNAs) have received a lot of attention since they may act as autocrine factors. However, how secreted miRNAs influence embryonic development is still poorly understood. We identified 294 miRNAs, 114 known, and 180 novel, in the conditioned medium of individually cultured bovine embryos.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play a possible role in cell⁻cell communication and are found in various body fluids and cell conditioned culture media. The aim of this study was to isolate and characterize EVs in culture medium conditioned by bovine embryos in group and to verify if these EVs are functionally active. Initially, ultracentrifuged bovine serum albumin (BSA) containing medium was selected as suitable EV-free embryo culture medium.

View Article and Find Full Text PDF