Publications by authors named "Krishna A Adeshara"

Background: The secondary vascular complications in diabetes mellitus (DM) are contributed by acute as well as inflammatory responses which get activated due to interaction between glycation adducts and respective receptors.

Aim: The present work was performed to understand the relationship between Advanced glycation end products (AGEs)-receptor for advanced glycation end products (RAGE) interaction with oxidative stress and inflammation in vascular complications.

Methods: For the present work we recruited 103 controls, 200 patients with type 2 DM, and 200 patients with Diabetic complications.

View Article and Find Full Text PDF

Background: Persistence hyperglycemia results in the formation of advanced glycation end products (AGEs) by non-enzymatic glycation. AGEs and their receptor RAGE play an important role in generation of inflammatory molecules and oxidative stress. Metformin regulates insulin responsive gene and helps to achieve glycemic control however, no extensive study reported about its role against glycation induced oxidative stress and vascular inflammation.

View Article and Find Full Text PDF

The present work aims to determine the effect of pioglitazone on in-vitro albumin glycation and AGE-RAGE induced oxidative stress and inflammation. Bovine serum albumin was glycated by methylglyoxal in absence or presence of pioglitazone. Glycation markers (fructosamine, carbonyl groups, β-amyloid aggregation, thiol groups, bilirubin binding capacity and AOPP); protein conformational changes (native-PAGE and HPLC analysis) were determined.

View Article and Find Full Text PDF

Background Of Study: Enhanced protein glycation in diabetes causes irreversible cellular damage through membrane modifications. Erythrocytes are persistently exposed to plasma glycated proteins; however, little are known about its consequences on membrane. Aim of this study was to examine the relationship between plasma protein glycation with erythrocyte membrane modifications in type 2 diabetes patients with and without vascular complications.

View Article and Find Full Text PDF

Diabetes is a metabolic disorder and over the past decades, it has become a major cause of morbidity and mortality affecting the youth and middle-aged as it is the fourth leading cause of disease related to death. In both type 1 and type 2 diabetes the severe pathogenesis cause micro vascular complications: nephropathy, retinopathy, neuropathy and macro vascular complications: cardiovascular disease, heart attacks and stroke. Under hyperglycemia, activation of different signaling mechanisms such as an increased polyol pathway, advanced-glycation end product formation, activation of Protein Kinase C and hexosamine pathway leads to the over expression of reactive oxygen species and causes pathogenesis of diabetic complications.

View Article and Find Full Text PDF