An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of -free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest.
View Article and Find Full Text PDFIn this study, a ligand-free palladium-catalyzed carbonylation of phenols is conducted under ambient conditions, utilizing the "Chloroform-COware" chemistry. The developed methodology enables the conversion of diverse medicinally relevant phenols, encompassing both natural and synthetic derivatives, into their respective aryl ester counterparts. This transformation is achieved through the reaction with a broad spectrum of aryl and heteroaryl iodides.
View Article and Find Full Text PDFAn air-stable, robust, and well-defined copper(II)-7-azaindole--oxide-based catalyst [Cu(7-AINO)] (abbreviated as Cu(II)-7-AINO) has been demonstrated as an efficient catalyst for various Ullmann-type coupling reactions. This easily prepared and cost-effective catalyst facilitates the arylation and heteroarylation of diverse -, -, and -nucleophiles, including azoles, aminoazoles, (hetero)arylthiols, and phenols. Notably, they also exhibit substantial compatibility with a wide range of functional groups.
View Article and Find Full Text PDFAn efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions.
View Article and Find Full Text PDFA phosphine-free, efficient protocol for aminocarbonylation and carbonylative Suzuki-Miyaura coupling has been developed using a novel palladium complex, [Pd(DMAP)(OAc)]. The complex was successfully synthesized using a stoichiometric reaction between Pd(OAc) and DMAP in acetone at room temperature and characterized using single-crystal X-ray analysis. Only 5 mol % catalyst loading was sufficient for effective carbonylative transformations.
View Article and Find Full Text PDFAn efficient and practical N-arylation of hydantoins with substituted aryl/heteroaryl boronic acids has been established, assisted by CuF/MeOH under the base and ligand-free conditions at room temperature and open air. The protocol is general, and various N-arylated hydantoins have been prepared in excellent yields with exclusive regioselectivity. The CuF/MeOH combination was explored further to furnish selective N-arylation of 5-fluorouracil nucleosides.
View Article and Find Full Text PDFCuF/DMAP has been established as an excellent catalytic system for vinylsilane-promoted N-vinylation of amides and azoles at room temperature without an external fluoride source. A mechanism has been proposed on the basis of the isolation of reactive intermediate [Cu(DMAP)Cl], fluoride ion-assisted transmetalation, and ultraviolet-visible spectroscopic studies. The catalytic efficiency of the synthesized and structurally characterized [Cu(DMAP)Cl] complex has been demonstrated.
View Article and Find Full Text PDFMultiple spectroscopic techniques, along with single-crystal X-ray analysis, have been used to reveal the detailed structural and electronic information on reaction intermediates of a new copper(II)-DBU catalytic system for the N-arylation of 7-Azaindole. The reaction mixture of Chan-Lam cross-coupling yields two dimeric copper(II)-7-azaindole complexes, including one attached with DBU, prior to adding arylboronic acid and are confirmed structurally and spectroscopically. A suitable mechanism has been proposed using the dimeric copper(II) complex as a catalyst for the coupling reactions.
View Article and Find Full Text PDFThe bacterial Type VI Secretion System (T6SS) functions as a nanomachine used by many gut pathogens. In the present protocol, we outlined how such molecular activities during interspecies interaction can be demonstrated at a population level. To this end, we first present a comprehensive protocol for isolation, identification, and functional characterization of T6SS-positive .
View Article and Find Full Text PDFChem Commun (Camb)
October 2020
The 7-azaindole building block has attracted considerable interest in the field of drug discovery in the current portfolio. Because of their powerful medicinal properties, the development of synthetic, elegant techniques for the functionalization of 7-azaindoles continues to be an active area of research. Advances in metal-catalyzed chemistry have recently supported the successful development of a number of novel and effective methods for functionalization of the 7-azaindole template.
View Article and Find Full Text PDFThe carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature.
View Article and Find Full Text PDFObjective: Comparison of efficacy and safety of two different regimens of vitamin D-600 000 IU as a single intramuscular dose, and 60 000IU orally once a week for 10 weeks-in treatment of nutritional rickets.
Methods: Children with nutritional rickets (age: 0.5-5 years, n = 61) were randomized to receive either 60 000IU vitamin D orally once a week for 10 weeks or 600 000IU single intramuscular injection.