Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins.
View Article and Find Full Text PDFBreeding efforts have helped in increasing crop yields globally [...
View Article and Find Full Text PDFSusceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711.
View Article and Find Full Text PDFBackground: Gmelina arborea Roxb is a fast-growing tree species of commercial importance for tropical countries due to multiple industrial uses of its wood. Wood is primarily composed of thick secondary cell walls of xylem cells which imparts the strength to the wood. Identification of the genes involved in the secondary cell wall biosynthesis as well as their cognate regulators is crucial to understand how the production of wood occurs and serves as a starting point for developing breeding strategies to produce varieties with improved wood quality, better paper pulping or new potential uses such as biofuel production.
View Article and Find Full Text PDFThe nonexpressor of pathogenesis-related 1 (NPR1) family plays diverse roles in gene regulation in the defense and development signaling pathways in plants. Less evidence is available regarding the significance of the -like gene family in cotton ( species). Therefore, to address the importance of the cotton -like gene family in the defense pathway, four species were studied: two tetraploid species, and , and their two potential ancestral diploids, and In this study, 12 -like family genes in were recognized, including six genes in the A-subgenome and six genes in the D-subgenome.
View Article and Find Full Text PDFIdentifying the maximum level of inherent defense against harmful insects in natural variation among wild lineages of crop plants may result in high yield tolerant varieties and reducing use of chemical insecticides. However, knowledge of natural cotton genotypes with high insect-resistance is still indistinguishable at the biochemical or molecular level. In the present study, different cultivated varieties were evaluated for their inherent insect-tolerance against two major cottons chewing pests.
View Article and Find Full Text PDFBackground: Male sterility has tremendous scientific and economic importance in hybrid seed production. Identification and characterization of a stable male sterility gene will be highly beneficial for making hybrid seed production economically feasible. In soybean, eleven male-sterile, female-fertile mutant lines (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified and mapped onto various soybean chromosomes, however the causal genes responsible for male sterility are not isolated.
View Article and Find Full Text PDFBackground: As one of the largest subfamilies of the receptor-like protein kinases (RLKs) in plants, Leucine Rich Repeats-RLKs (LRR-RLKs) are involved in many critical biological processes including growth, development and stress responses in addition to various physiological roles. Arabidopsis contains 234 LRR-RLKs, and four members of Stress Induced Factor (SIF) subfamily (AtSIF1-AtSIF4) which are involved in abiotic and biotic stress responses. Herein, we aimed at identification and functional characterization of SIF subfamily in cultivated tetraploid cotton Gossypium hirsutum.
View Article and Find Full Text PDFThe single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality.
View Article and Find Full Text PDFBryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.
View Article and Find Full Text PDFThe recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions.
View Article and Find Full Text PDFBackground: The plant cell wall serves as a primary barrier against pathogen invasion. The success of a plant pathogen largely depends on its ability to overcome this barrier. During the infection process, plant parasitic nematodes secrete cell wall degrading enzymes (CWDEs) apart from piercing with their stylet, a sharp and hard mouthpart used for successful infection.
View Article and Find Full Text PDFHigh-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G.
View Article and Find Full Text PDFIn the present study, we selected four distinct classes of light-regulated promoters. The light-regulated promoters can be distinctly grouped into either TATA-box-containing or TATA-less (initiator-containing) promoters. Further, using either native promoters or their swapped versions of core promoter elements, we established that TATA-box and Inr (Initiator) elements have distinct mechanisms which are involved in light-mediated regulation, and these elements are not swappable.
View Article and Find Full Text PDFThe sequence information has been proved to be an essential genomic resource in case of crop plants for their genetic improvement and better utilization by humans. To dissect the Gossypium hirsutum genome for large-scale development of genomic resources, we adopted hypomethylated restriction-based genomic enrichment strategy to sequence six diverse genotypes. Approximately 5.
View Article and Find Full Text PDFBackground: Genome-wide gene expression profiling and detailed physiological investigation were used for understanding the molecular mechanism and physiological response of Gossypium herbaceum, which governs the adaptability of plants in drought conditions. Recently, microarray-based gene expression analysis is commonly used to decipher genes and genetic networks controlling the traits of interest. However, the results of such an analysis are often plagued due to a limited number of genes (probe sets) on microarrays.
View Article and Find Full Text PDFHistone proteins are the major protein components of chromatin - the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. For many years, histones were considered passive structural components of eukaryotic chromatin. In recent years, it has been demonstrated that dynamic association of histones and their variants to the genome plays a very important role in gene regulation.
View Article and Find Full Text PDFA vast body of evidence in the literature indicates that nucleosomes can act as barriers to transcriptional initiation. The nucleosome at the promoter inhibits association of transcription factors disallowing active transcription of the gene. We have found a nucleosome on tobacco pathogenesis-related gene-1a (PR-1a) core promoter and mapped its boundaries and extension to find its span.
View Article and Find Full Text PDFFusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant.
View Article and Find Full Text PDFFour microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs.
View Article and Find Full Text PDF