Unlabelled: Federal Tier 3 motor vehicle emission and fuel sulfur standards have been promulgated in the United States to help attain air quality standards for ozone and PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm).
View Article and Find Full Text PDFOn-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.
View Article and Find Full Text PDFA suite of mechanistic atmospheric and mercury (Hg) cycling and bioaccumulation models is applied to simulate atmospheric Hg deposition and Hg concentrations in the water column and in fish in a Hg-impaired freshwater lake located in the northeastern United States that receives its Hg loading primarily through deposition. Two future-year scenarios evaluate the long-term response of fish tissue Hg concentrations to reductions in local and nationwide coal-fired electric-generating utility and other Hg emissions and an increase or decrease in global (non-US) Hg emissions. Results indicate that fish tissue Hg concentrations in this ecosystem could require approximately 3 yr to 8 yr to begin to respond to declines in US emissions and deposition with a fish Hg reduction proportional to deposition reduction requiring over 50 yr.
View Article and Find Full Text PDFA mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota.
View Article and Find Full Text PDFGulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings.
View Article and Find Full Text PDFThe contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3).
View Article and Find Full Text PDFJ Air Waste Manag Assoc
June 2006
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants.
View Article and Find Full Text PDFThe Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.
View Article and Find Full Text PDFA multiscale modeling system that consists of a global chemical transport model (CTM) and a nested continental CTM was used to simulate the global atmospheric fate and transport of mercury and its deposition over the contiguous United States. The performance of the CTMs was evaluated against available data. The coefficient of determination (r2) for observed versus simulated annual mercury wet deposition fluxes over North America was 0.
View Article and Find Full Text PDFA modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at three receptor locations in New York State.
View Article and Find Full Text PDFMathematical modeling of the atmospheric fate and transport of mercury (Hg) was conducted using three nested domains covering global, continental and regional scales with horizontal resolutions of approximately 1000, 100 and 20 km, respectively. Comparisons of modeling results with wet deposition fluxes show a coefficient of determination (r(2)) of 0.45 for the continental simulation and 0.
View Article and Find Full Text PDF