A main goal of human space exploration is to develop humanity into a multi-planet species where civilization extends beyond planet Earth. Establishing a self-sustaining human presence on Mars is key to achieving this goal. resource utilization (ISRU) on Mars is a critical component to enabling humans on Mars to both establish long-term outposts and become self-reliant.
View Article and Find Full Text PDFWe used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter "hotspots" embedded in the ice.
View Article and Find Full Text PDFSediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm.
View Article and Find Full Text PDFThe Mars Icebreaker Life mission will search for subsurface life on Mars. It consists of three payload elements: a drill to retrieve soil samples from approximately 1 m below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.
View Article and Find Full Text PDFThe search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago.
View Article and Find Full Text PDF