Publications by authors named "Kris Steinbrecher"

Background: Protease-activated receptor-1 (PAR-1) plays a major role in multiple disease processes, including colitis. Understanding the mechanisms coupling PAR-1 to disease pathogenesis is complicated by the fact that PAR-1 is broadly expressed across multiple cell types.

Objective: Determine the specific contributions of PAR-1 expressed by macrophages and colonic enterocytes to infectious colitis.

View Article and Find Full Text PDF

Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated.

View Article and Find Full Text PDF

Background: Polymeric immunoglobulin receptor (pIgR) transport of secretory immunoglobulin A (SIgA) to mucosal surfaces is thought to promote gut integrity and immunity to Salmonella enterica serovar Typhimurium (S. Typhimurium), an invasive pathogen in mice. To elucidate potential mechanisms, we assessed intestinal barrier function and both oral and systemic S.

View Article and Find Full Text PDF

The guanylate cyclase C (GC-C) receptor regulates electrolyte and water secretion into the gut following activation by the E. coli enterotoxin STa, or by weaker endogenous agonists guanylin and uroguanylin. Our previous work has demonstrated that GC-C plays an important role in controlling initial infection as well as carrying load of non-invasive bacterial pathogens in the gut.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disorder in which epithelium-generated fluid flow from the lung, intestine, and pancreas is impaired due to mutations disrupting CF transmembrane conductance regulator (CFTR) channel function. CF manifestations of the pancreas and lung are present in the vast majority of CF patients, and 15% of CF infants are born with obstructed gut or meconium ileus. However, constipation is a significantly underreported outcome of CF disease, affecting 47% of the CF patients, and management becomes critical in the wake of increasing life span of CF patients.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis.

View Article and Find Full Text PDF

The etiology and mechanisms for inflammatory bowel disease (IBD) are incompletely known. Determination of new, clinically important mechanisms for intestinal inflammation is imperative for developing effective therapies to treat IBD We sought to define a widespread mechanism for colon mucosal inflammation via the activation of TGF- activated Kinase 1 (TAK1), a central regulator of cellular inflammatory actions. Activation of TAK1 and the downstream inflammatory signaling mediators was determined in pediatric patients with ulcerative colitis (UC) or Crohn's disease (CD) as well as in DSS-induced and spontaneous IBD in mice.

View Article and Find Full Text PDF

Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1β, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive.

View Article and Find Full Text PDF

Guanylin (GN) and uroguanylin (UGN), through activation of guanylyl cyclase C (GCC), serve to control intestinal fluid homeostasis. Both peptides are produced in the intestinal epithelium, but their cellular origin has not been fully charted. Using quantitative PCR and an improved in situ hybridization technique (RNAscope), we have assessed the expression of GN (Guca2a), UGN (Guca2b), and GCC (Gucy2c) in mouse intestine.

View Article and Find Full Text PDF

Dioscoreaceae, a kind of yam plant, has been recommended for treatment of chronic inflammatory conditions. However, the mechanisms are poorly defined. Methyl protodioscin (MPD) is one of the main bioactive components in Dioscoreaceae.

View Article and Find Full Text PDF

The costimulatory B7-1 (CD80)/B7-2 (CD86) molecules, along with T-cell receptor stimulation, together facilitate T-cell activation. This explains why in vivo B7 costimulation neutralization efficiently silences a variety of human autoimmune disorders. Paradoxically, however, B7 blockade also potently moderates accumulation of immune-suppressive regulatory T cells (Tregs) essential for protection against multiorgan systemic autoimmunity.

View Article and Find Full Text PDF

Uroguanylin is a gastrointestinal hormone primarily involved in fluid and electrolyte handling. It has recently been reported that prouroguanylin, secreted postprandially, is converted to uroguanylin in the brain and activates the receptor guanylate cyclase-C (GC-C) to reduce food intake and prevent obesity. We tested central nervous system administration of two GC-C agonists and found no significant reduction of food intake.

View Article and Find Full Text PDF

The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. On the basis of evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/- mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown.

View Article and Find Full Text PDF

Purpose Of Review: Guanylate cyclase C (GC-C) is a transmembrane receptor that is expressed primarily on intestinal epithelial cells. Activation of this receptor by its endogenous peptide ligands initiates cyclic guanosine monophosphate-dependent (cGMP) salt and water movement in the intestine. GC-C is targeted by the enterotoxigenic Escherichia coli heat-stable enterotoxin STa, which deregulates this pathway and causes secretory diarrhea.

View Article and Find Full Text PDF

Background: Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection.

View Article and Find Full Text PDF

Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammation is a key factor in obesity-related health issues, particularly in the development of nonalcoholic fatty liver disease (NAFLD), which is now the most common chronic liver disease in developed countries.
  • Research shows that mice lacking IL-17RA experienced more weight gain and fat accumulation when on a high-fat diet but had less liver damage compared to normal mice, suggesting a complex relationship between obesity and liver health.
  • The study concludes that the IL-17 signaling pathway plays a crucial role in the worsening of NAFLD and could be a promising target for new treatments.
View Article and Find Full Text PDF

Background: Guanylate Cyclase C (GC-C) is an apically-oriented transmembrane receptor that is expressed on epithelial cells of the intestine. Activation of GC-C by the endogenous ligands guanylin or uroguanylin elevates intracellular cGMP and is implicated in intestinal ion secretion, cell proliferation, apoptosis, intestinal barrier function, as well as the susceptibility of the intestine to inflammation. Our aim was to determine if GC-C is required for host defense during infection by the murine enteric pathogen Citrobacter rodentium of the family Enterobacteriacea.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) can either self-renew or differentiate into various types of cells of the blood lineage. Signaling pathways that regulate this choice of self-renewal versus differentiation are currently under extensive investigation. In this study, we report that deregulation of Notch signaling skews HSC differentiation in mouse models of Fanconi anemia (FA), a genetic disorder associated with bone marrow failure and progression to leukemia and other cancers.

View Article and Find Full Text PDF

In inflammatory bowel diseases (IBDs), particularly ulcerative colitis, intestinal macrophages (MΦs), eosinophils, and the eosinophil-selective chemokine CCL11, have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood.

View Article and Find Full Text PDF

Epithelial myosin light chain kinase (MLCK)-dependent barrier dysfunction contributes to the pathogenesis of inflammatory bowel diseases (IBD). We reported that epithelial GM-CSF-STAT5 signalling is essential for intestinal homeostatic response to gut injury. However, mechanism, redundancy by STAT5 or cell types involved remained foggy.

View Article and Find Full Text PDF

Guanylate cyclase C (GUCY2C or GC-C) and its ligands, guanylin (GUCA2A or Gn) and uroguanylin (GUCA2B or Ugn), are expressed in intestinal epithelial cells and regulate ion secretion, intestinal barrier function, and epithelial monolayer homeostasis via cGMP-dependent signaling pathways. The aim of this study was to determine whether GC-C and its ligands direct the course of intestinal inflammation. In this article, we show that dextran sodium sulfate (DSS)-induced clinical disease and histological damage to the colonic mucosa were significantly less severe in GC-C(-/-) mice and moderately reduced in Gn(-/-) animals.

View Article and Find Full Text PDF

Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation.

View Article and Find Full Text PDF