Phenylpropenes are a class of natural products that are synthesised by a vast range of plant species and hold considerable promise in the flavour and fragrance industries. Many studies have been carried out to elucidate and characterise the enzymes responsible for the production of these volatile compounds. However, there is a scarcity of studies demonstrating the production of phenylpropenes in microbial cell factories.
View Article and Find Full Text PDFBackground: (Hydroxy)cinnamyl alcohols and allylphenols, including coniferyl alcohol and eugenol, are naturally occurring aromatic compounds widely utilised in pharmaceuticals, flavours, and fragrances. Traditionally, the heterologous biosynthesis of (hydroxy)cinnamyl alcohols from (hydroxy)cinnamic acids involved CoA-dependent activation of the substrate. However, a recently explored alternative pathway involving carboxylic acid reductase (CAR) has proven efficient in generating the (hydroxy)cinnamyl aldehyde intermediate without the need for CoA activation.
View Article and Find Full Text PDFFlavones and flavonols are important classes of flavonoids with nutraceutical and pharmacological value, and their production by fermentation with recombinant microorganisms promises to be a scalable and economically favorable alternative to extraction from plant sources. Flavones and flavonols have been produced recombinantly in a number of microorganisms, with typically being a preferred production host for these compounds due to higher yields and titers of precursor compounds, as well as generally improved ability to functionally express cytochrome P450 enzymes without requiring modification to improve their solubility. Recently, a rapid prototyping platform has been developed for high-value compounds in , and a number of gatekeeper (2)-flavanones, from which flavones and flavonols can be derived, have been produced to high titers in using this platform.
View Article and Find Full Text PDFThe lignocellulosic sugar d-xylose has recently gained prominence as an inexpensive alternative substrate for the production of value-added compounds using genetically modified organisms. Among the prokaryotes, has become the host for the development of engineered microbial cell factories. The favored status of resulted from a century of scientific explorations leading to a deep understanding of its systems.
View Article and Find Full Text PDFObjective: To identify and characterize a new β-agarase from Cellulophaga omnivescoria W5C capable of producing biologically-active neoagarooligosaccharides from agar.
Results: The β-agarase, Aga1, has signal peptides on both N- and C-terminals, which are involved in the type IX secretion system. It shares 75% protein sequence identity with AgaD from Zobellia galactanivorans and has a molecular weight of 54 kDa.
In the published version, the y-axis data of Fig. 3c was incorrectly inserted (OD600 instead of D-xylonate (g L) and the x-axes of Figs. 3b, 3d, 3e and 3f ended at 48 h instead of 72 h.
View Article and Find Full Text PDFThe capability of Escherichia coli to catabolize D-xylonate is a crucial component for building and optimizing the Dahms pathway. It relies on the inherent dehydratase and keto-acid aldolase activities of E. coli.
View Article and Find Full Text PDFThe non-conventional D-xylose metabolism called the Dahms pathway which only requires the expression of at least three enzymes to produce pyruvate and glycolaldehyde has been previously engineered in Escherichia coli. Strains that rely on this pathway exhibit lower growth rates which were initially attributed to the perturbed redox homeostasis as evidenced by the lower intracellular NADPH concentrations during exponential growth phase. NADPH-regenerating systems were then tested to restore the redox homeostasis.
View Article and Find Full Text PDFThe D-xylose oxidative pathway (XOP) has recently been employed in several recombinant microorganisms for growth or for the production of several valuable compounds. The XOP is initiated by D-xylose oxidation to D-xylonolactone, which is then hydrolyzed into D-xylonic acid. D-Xylonic acid is then dehydrated to form 2-keto-3-deoxy-D-xylonic acid, which may be further dehydrated then oxidized into α-ketoglutarate or undergo aldol cleavage to form pyruvate and glycolaldehyde.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2019
Monitoring and control of odorous compound emissions have been enforced by the Korean government since 2005. One of the point sources for these emissions was from food waste composting facilities. In this study, a pilot-scale scrubber installed in a composting facility was evaluated for its performance in the removal of malodorous compounds.
View Article and Find Full Text PDFThe continued research in the isolation of novel bacterial strains is inspired by the fact that native microorganisms possess certain desired phenotypes necessary for recombinant microorganisms in the biotech industry. Most studies have focused on the isolation and characterization of strains from marine ecosystems as they present a higher microbial diversity than other sources. In this study, a marine bacterium, W5C, was isolated from red seaweed collected from Yeosu, South Korea.
View Article and Find Full Text PDFGlycolic acid (GA) is an ⍺-hydroxy acid used in cosmetics, packaging, and medical industries due to its excellent properties, especially in its polymeric form. In this study, Escherichia coli was engineered to produce GA from D-xylose by linking the Dahms pathway, the glyoxylate bypass, and the partial reverse glyoxylate pathway (RGP). Initially, a GA-producing strain was constructed by disrupting the xylAB and glcD genes in the E.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2018
Interest in agar or agarose-based pharmaceutical products has driven the search for potent agarolytic enzymes. An extracellular β-agarase (AgaA7) recently isolated from Pseudoalteromonas hodoensis sp. nov was expressed in Bacillus subtilis, which was chosen due to its capability to overproduce and secrete functional enzymes.
View Article and Find Full Text PDFBiosynthetic pathways for the production of biofuels often rely on inherent aldehyde reductases (ALRs) of the microbial host. These native ALRs play vital roles in the success of the microbial production of 1,3-propanediol, 1,4-butanediol, and isobutanol. In the present study, the main ALR for 1,2,4-butanetriol (BT) production in Escherichia coli was identified.
View Article and Find Full Text PDFAn engineered Escherichia coli strain was developed for enhanced isoprene production using D-galactose as substrate. Isoprene is a valuable compound that can be biosynthetically produced from pyruvate and glyceraldehyde-3-phosphate (G3P) through the methylerythritol phosphate pathway (MEP). The Leloir and De Ley-Doudoroff (DD) pathways are known existing routes in E.
View Article and Find Full Text PDFDevelopment of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl-Coenzyme A as a precursor.
View Article and Find Full Text PDFEthylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from D-xylose is reported.
View Article and Find Full Text PDF