Leinamycin (1) is a Streptomyces-derived natural product that displays nanomolar IC(50) values against human cancer cell lines. In the work described here, we report the synthesis and characterization of a small leinamycin analogue 19 that closely resembles the 'upper-right quadrant' of the natural product, consisting of an alicyclic 1,2-dithiolan-3-one 1-oxide heterocycle connected to an alkene by a two-carbon linker. The results indicate that this small analogue contains the core set of functional groups required to enable thiol-triggered generation of both redox active polysulfides and an episulfonium ion intermediate via the complex reaction cascade first seen in the natural product leinamycin.
View Article and Find Full Text PDFSulfenic acids (RSOH) are among the most common sulfur-centered reactive intermediates generated in biological systems. Given the biological occurrence of sulfenic acids, it is important to explore the reactivity of these intermediates under physiological conditions. The Morin rearrangement is a synthetic process developed for the conversion of penicillin derivatives into cephalosporins that proceeds via nucleophilic attack of an alkene on a sulfenic acid intermediate.
View Article and Find Full Text PDFOrg Biomol Chem
May 2007
Attack of cellular thiols on the antitumor natural product leinamycin is believed to generate a sulfenate intermediate that undergoes subsequent rearrangement to a DNA-alkylating episulfonium ion. Here, 2-(trimethylsilyl)ethyl sulfoxides were employed in a fluoride-triggered generation of sulfenate anions related to the putative leinamycin-sulfenate. The resulting sulfenates enter smoothly into a leinamycin-type rearrangement reaction to afford an episulfonium ion alkylating agent.
View Article and Find Full Text PDFGrowing evidence indicates that endogenously produced hydrogen peroxide acts as a cellular signaling molecule that (among other things) can regulate the activity of some protein phosphatases. Recent X-ray crystallographic studies revealed an unexpected chemical transformation underlying the redox regulation of protein tyrosine phosphatase 1B, in which oxidative inactivation of the enzyme yields an intrastrand protein cross-link between the catalytic cysteine residue and its neighboring amide nitrogen. This work describes a small organic molecule that serves as an effective model for the redox-sensing assembly of functional groups at the active site of PTP1B.
View Article and Find Full Text PDFHydropersulfides (RS(x)SH) have been implicated as important intermediates in the cell-killing action of the anticancer natural products leinamycin and varacin. It has been suggested that persulfides can mediate the conversion of molecular oxygen to reactive oxygen species (O2*-, H2O2, and HO*). Here, experiments with synthetic benzyl hydrodisulfide (BnSSH) provide direct evidence that persulfides readily decompose to produce reactive oxygen species under physiologically relevant conditions.
View Article and Find Full Text PDFReaction of the antitumor agent leinamycin with cellular thiols results in conversion of the natural product to a DNA-alkylating episulfonium alkylating agent via an intriguing sequence of chemical reactions. To establish whether the chemistry first seen in leinamycin represents a general motif that can function in various molecular frameworks, construction of greatly simplified analogues containing only the "core" funcional groups anticipated to be necessary for thiol-triggered generation of an alkylating agent was undertaken. For this purpose, the "stripped-down" leinamycin analogue 7-(3-methyl-but-2-enyl)-1-oxo-1H-lambda4-benzo[1,2]dithiol-3-one (4) was synthesized.
View Article and Find Full Text PDF