Publications by authors named "Krikor T Dikranian"

Zika virus (ZIKV) infection during pregnancy has been causally linked to a constellation of neurodevelopmental deformities in the fetus resulting in a disease termed congenital Zika syndrome (CZS). Here we detail how ZIKV infection produces extensive neuropathology in the developing mouse brain and spinal cord of both sexes. Surprisingly, neuropathology differs depending on viral strain with a French Polynesian isolate producing primarily excitotoxicity and a Brazilian isolate being almost exclusively apoptotic but occurring over a prolonged period that is more likely to produce severe hypoplasia.

View Article and Find Full Text PDF

Background: In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains.

View Article and Find Full Text PDF

Background: The authors have previously shown that exposure of the neonatal nonhuman primate (NHP) brain to isoflurane for 5 h causes widespread acute apoptotic degeneration of neurons and oligodendrocyte. The current study explored the potential apoptogenic action of isoflurane in the fetal NHP brain.

Methods: Fetal rhesus macaques at gestational age of 120 days (G120) were exposed in utero for 5 h to isoflurane anesthesia (n = 5) or to no anesthesia (control condition; n = 4), and all regions of the brain were systematically evaluated 3 h later for evidence of apoptotic degeneration of neurons or glia.

View Article and Find Full Text PDF

Objective: Previously we reported that exposure of 6-day-old (P6) rhesus macaques to isoflurane for 5 hours triggers a robust neuroapoptosis response in developing brain. We have also observed (unpublished data) that isoflurane causes apoptosis of cellular profiles in the white matter that resemble glia. We analyzed the cellular identity of the apoptotic white matter profiles and determined the magnitude of this cell death response to isoflurane.

View Article and Find Full Text PDF

Closed head injury to the developing rat brain causes an acute excitotoxic lesion and axonal disruption at the impact site followed by a delayed pattern of apoptotic damage at various distant sites. Using an electromagnetic impact device to deliver a precisely controlled degree of mechanical deformation to the P7 infant rat skull, we studied the distribution of distant apoptotic lesions and the sequence and time course with which these lesions evolve following relatively mild closed head injury. The first major wave of apoptotic neurodegeneration occurred at 8 h postimpact in the retrosplenial cortex and pre- and parasubiculum.

View Article and Find Full Text PDF