The largest megalake in the geological record formed in Eurasia during the late Miocene, when the epicontinental Paratethys Sea became tectonically-trapped and disconnected from the global ocean. The megalake was characterized by several episodes of hydrological instability and partial desiccation, but the chronology, magnitude and impacts of these paleoenvironmental crises are poorly known. Our integrated stratigraphic study shows that the main desiccation episodes occurred between 9.
View Article and Find Full Text PDFThe India-Asia collision is an outstanding smoking gun in the study of continental collision dynamics. How and when the continental collision occurred remains a long-standing controversy. Here we present two new paleomagnetic data sets from rocks deposited on the distal part of the Indian passive margin, which indicate that the Tethyan Himalaya terrane was situated at a paleolatitude of ∼19.
View Article and Find Full Text PDFLitho- and biostratigraphic data are provided of 5 stratigraphic sections in Romania covering the "Badenian" marine flooding that occurred in the Central Paratethys during the middle Miocene (Langhian). The dataset includes stratigraphic logs and descriptions of the profiles, and biostratigraphic analyses on calcareous nannofossils and foraminifera. In addition, characteristic stratigraphic features and representative fossils, including tiny foraminifera in the Campiniţa section in the SE Carpathian Foredeep, are presented in photographs.
View Article and Find Full Text PDFA global Neogene cooling trend culminated ~7 million years ago with the onset of Greenland glaciation. Increased ocean-atmosphere interaction and low- to high-latitude circulation are thought to be key factors in reorganizing late Miocene global temperature and precipitation patterns, but the drivers of this reorganization have yet to be identified. Here, we present new information about the evolution of the Atlantic-Mediterranean gateway that generated Mediterranean overflow.
View Article and Find Full Text PDFSE Asia comprises a heterogeneous assemblage of fragments derived from Cathaysia (Eurasia) in the north and Gondwana in the south, separated by suture zones representing closed former ocean basins. The western part of the region comprises Sundaland, which was formed by Late Permian-Triassic amalgamation of continental and arc fragments now found in Indochina, the Thai Penisula, Peninsular Malaysia, and Sumatra. On Borneo, the Kuching Zone formed the eastern margin of Sundaland since the Triassic.
View Article and Find Full Text PDFWe provide lithological, sedimentological and micropalaeontological descriptions of 39 sections and boreholes crossing the upper Miocene deposits of the Rifian Corridor. These deposits represent the sedimentary remnants of the marine gateway that connected the Atlantic to the Mediterranean in the late Miocene. Results from these 39 sites were adopted to reconstruct the palaeogeographic evolution of the gateway presented in the associated research article (Capella et al.
View Article and Find Full Text PDFThe geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and Ar/Ar age data. A first phase of basin formation occurred in the late Oligocene.
View Article and Find Full Text PDFIn the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride-Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine.
View Article and Find Full Text PDFCalibration of the geological time scale is achieved by independent radioisotopic and astronomical dating, but these techniques yield discrepancies of approximately 1.0% or more, limiting our ability to reconstruct Earth history. To overcome this fundamental setback, we compared astronomical and 40Ar/39Ar ages of tephras in marine deposits in Morocco to calibrate the age of Fish Canyon sanidine, the most widely used standard in 40Ar/39Ar geochronology.
View Article and Find Full Text PDF