Cardiac catheter ablation requires an adequate contact between myocardium and catheter tip. Our aim was to quantify the relationship between the contact force (CF) and the resulting mechanical deformation induced by the catheter tip using an ex vivo model and computational modeling. The catheter tip was inserted perpendicularly into porcine heart samples.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
April 2022
Purpose: Our previous study confirmed that not only force but also the catheter contact angle substantially impacted the contact area and its morphology. Therefore, in this study, we aimed to further investigate the relationship between the catheter contact area and the dimensions of the ablation lesion area as a function of catheter contact angle and force in radiofrequency catheter ablation.
Methods: The radiofrequency catheter ablation test was performed for 5 contact angles and 8 contact forces at a fixed ablation time of 30 s.
Purpose: The aims of this study were to develop an experimental procedure for setting the catheter angle with respect to the surface of the heart muscle and the catheter contact force and to investigate the catheter contact area on the heart muscle as a function of catheter contact angle and force.
Methods: Visualization tests were performed for 5 contact angles (0°, 30°, 45°, 60°, and 90°) and 8 contact forces (2, 4, 6, 10, 15, 20, 30, and 40 gf). Each experiment was repeated 6 times with 2 different commercially available catheter tips.