Publications by authors named "Kreye V"

To elucidate the ionic mechanism of endothelin-1 (ET-1)-induced focal ventricular tachyarrhythmias, the regulation of I(K1) and its main molecular correlates, Kir2.1, Kir2.2 and Kir2.

View Article and Find Full Text PDF

Flavonoids are naturally occurring food ingredients that have been associated with reduced cardiovascular mortality in epidemiological studies. In a previous study, we demonstrated for the first time that flavonoids are inhibitors of cardiac human ether-à-go-go-related gene (HERG) channels. Furthermore, we observed that grapefruit juice induced mild QTc prolongation in healthy subjects.

View Article and Find Full Text PDF

Background: A high intake of dietary flavonoids, which are abundant in fruits, vegetables, tea, and wine, is known to reduce cardiovascular mortality. The effects of flavonoids on cardiac electrophysiology, which theoretically may have both antiarrhythmic and proarrhythmic consequences, have not been studied systematically to date.

Methods And Results: We screened a broad spectrum of flavonoids for their inhibitory activity on HERG channels by using heterologous expression in Xenopus oocytes.

View Article and Find Full Text PDF

Ajmaline is a class Ia anti-arrhythmic drug used in several European countries and Japan as first-line treatment for ventricular tachyarrhythmia. Ajmaline has been reported to induce cardiac output (QT) prolongation and to inhibit cardiac potassium currents in guinea pig cardiomyocytes. In order to elucidate the molecular basis of these effects, we examined effects of ajmaline on human ether a-go-go related gene HERG potassium channels.

View Article and Find Full Text PDF

Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG.

View Article and Find Full Text PDF

Patients with cardiac disease typically develop life-threatening ventricular arrhythmias during physical or emotional stress, suggesting a link between adrenergic stimulation and regulation of the cardiac action potential. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of the repolarizing delayed rectifier potassium current, I(Kr). Previous studies have revealed that hERG channel activation is modulated by activation of the beta-adrenergic system.

View Article and Find Full Text PDF

Trazodone is an atypical antidepressant that is commonly used in the treatment of affective disorders. There have repeatedly been reports of cardiac arrhythmia associated with this drug and concerns have been raised regarding the cardiac safety of trazodone. However, interaction with HERG channels as a main factor of cardiac side effects has not been studied to date.

View Article and Find Full Text PDF

Objective: The cardiac inwardly rectifying potassium current IK1 and its molecular correlates Kir2.1 and Kir2.2 play an important role in cardiac repolarisation and in the pathogenesis of hereditary long-QT syndrome (LQTS-7).

View Article and Find Full Text PDF

1 The topoisomerase II inhibitor amsacrine is used in the treatment of acute myelogenous leukemia. Although most anticancer drugs are believed not to cause acquired long QT syndrome (LQTS), concerns have been raised by reports of QT interval prolongation, ventricular fibrillation and death associated with amsacrine treatment. Since blockade of cardiac human ether-a-go-go-related gene (HERG) potassium currents is an important cause of acquired LQTS, we investigated the acute effects of amsacrine on cloned HERG channels to determine the electrophysiological basis for its proarrhythmic potential.

View Article and Find Full Text PDF

In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements.

View Article and Find Full Text PDF

Budipine is a non-dopaminergic antiparkinsonian drug causing acquired forms of Long QT syndrome (aLQTS). As a consequence, the manufacturer has restricted the use of budipine in patients who exhibit additional risk factors for the development of "Torsades-de-Pointes" tachycardias (TdP). The molecular basis of this serious side effect has not been elucidated yet.

View Article and Find Full Text PDF

Dronedarone is a noniodinated benzofuran derivative that has been synthesized to overcome the limiting iodine-associated adverse effects of the potent antiarrhythmic drug amiodarone. In this study, the acute electrophysiological effects of dronedarone on repolarizing potassium channels were investigated to determine the class III antiarrhythmic action of this compound. HERG and KvLQT1/minK potassium channels conduct the delayed rectifier potassium current IK in human heart, being a primary target for class III antiarrhythmic therapy.

View Article and Find Full Text PDF

Modulation of the slow component of the delayed rectifier potassium current (IKs) in heart critically affects cardiac arrhythmogenesis. Its current amplitude is regulated by the sympathetic nervous system. However, the signal transduction from the beta-adrenergic system to the KvLQT1/MinK (KCNQ1/KCNE1) potassium channel, which is the molecular correlate of the IKs current in human cardiomyocytes, is not sufficiently understood.

View Article and Find Full Text PDF

Objective: Patients with HERG-associated long QT syndrome typically develop tachyarrhythmias during physical or emotional stress. Previous studies have revealed that activation of the beta-adrenergic system and consecutive elevation of the intracellular cAMP concentration regulate HERG channels via protein kinase A-mediated phosphorylation of the channel protein and via direct interaction with the cAMP binding site of HERG. In contrast, the influence of the alpha-adrenergic signal transduction cascade on HERG currents as suggested by recent reports is less well understood.

View Article and Find Full Text PDF

Objective: To investigate the molecular mechanism of human ether-a-go-go-related gene (HERG) potassium channels regulated by protein kinase A (PKA) in a human cell line.

Methods: HERG channels were stably expressed in human embryonic kidney (HEK) 293 cells, and currents were measured with the patch clamp technique. The direct phosphorylation of HERG channel proteins expressed heterologously in Xenopus laevis oocytes was examined by (32)P labeling and immunoprecipitation with an anti-HERG antibody.

View Article and Find Full Text PDF

Chromanol 293B and dofetilide are inhibitors of IKs and IKr, i.e., of the slow and the rapid component of the delayed rectifier potassium current.

View Article and Find Full Text PDF

Objective: The aryloxypropanolamine carvedilol is a multiple action cardiovascular drug with blocking effects on alpha-receptors, beta-receptors, Ca(2+)-channels, Na(+)-channels and various native cardiac K(+) channels, thereby prolonging the cardiac action potential. In a number of clinical trials with patients suffering from congestive heart failure, carvedilol appeared to be superior to other beta-blocking agents in reducing total mortality. Given the multiple pharmacological actions of carvedilol, this may be due to specific channel blockade rather than beta-antagonistic activity.

View Article and Find Full Text PDF

Single channel cell-attached patch and whole-cell clamp experiments on the mode of action of the K+ channel opener (KCO), levcromakalim, were performed in guinea pig isolated portal vein cells. At +20 mV (135/23 mM K+ in bath/pipette), 10 microM levcromakalim activated K+ channels with a chord conductance of 23.2 pS (K(KCO)), which were sensitive to the blocker of ATP-dependent K+ channels (K(ATP)), glibenclamide.

View Article and Find Full Text PDF

Vasodilatation following tissue ischemia is assumed to partially result from activation of ATP-dependent K+ channels (KATP). To assess the effect of cytosolic adenosine nucleotides, the balance of which depends on tissue pO2, on KATP, we have measured steady state outward currents (SSC) by the whole-cell clamp technique in smooth muscle cells of the guinea pig portal vein at different concentrations of ATP and ADP in the pipette solution. Glibenclamide, a selective inhibitor of KATP, was used as a pharmacological tool.

View Article and Find Full Text PDF

Tedisamil is a new bradycardic agent with an inhibitory action on K+ channels in cardiac muscle, and secondary beneficial effects in experimentally induced cardiac ischemia. In whole-cell clamp studies in enzymatically dispersed, single smooth muscle cells from the guinea-pig portal vein, tedisamil inhibited the delayed rectifier K+ current (determined as the charge transferred through the cell membrane), the mean concentration for half-maximal inhibition being 2.9 microM.

View Article and Find Full Text PDF

Tedisamil, a new bradycardic agent with an inhibitory action on K+ channels in cardiac muscle, was found to inhibit in a non-competitive manner the relaxation induced by the K+ channel opener cromakalim in noradrenaline-stimulated helical strips from rabbit aortae. Tedisamil tended to be more potent in this respect than glibenclamide; the latter however competitively antagonized the cromakalim-induced relaxation. In rabbit aorta preloaded with 86Rb as a marker of K+, 10 mumol/l tedisamil inhibited the 86Rb efflux induced by 10 mumol/l cromakalim.

View Article and Find Full Text PDF

Nicorandil and cromakalim were found to stimulate 86Rb efflux (a marker of K+ ions) from resting preparations of rabbit aorta. This action was suppressed by 10(-5) M glibenclamide, an antagonist of K(+)-channel openers in vascular smooth muscle. Through intracellular production of cyclic GMP, and subsequent suppression of cellular Ca2+ activation, nitrovasodilators interfere indirectly with the activation of Ca(2+)-dependent ion channels.

View Article and Find Full Text PDF

Enzymatically dispersed smooth muscle cells of the guinea-pig portal vein were studied by the patch-clamp technique. They were found to have Ca(2+)-dependent K+ channels with the typical properties of the "BK" channel, i.e.

View Article and Find Full Text PDF