Publications by authors named "Krestinina L"

Health effects of in utero exposure to ionizing radiation, especially among adults, are still unclear. The aim of this study was to analyze cancer risk in a cohort of subjects exposed in utero due to releases of nuclear waste into the Techa River in the Southern Urals, taking into account additional postnatal exposure. Analysis for solid cancer was based on 242 cases among 10,482 cohort members, accumulating 381,948 person-years at risk, with follow-up from 1956-2009, while analysis for hematological malignancies was based on 26 cases among 11,070 persons, with 423,502 person-years at risk, with follow-up from 1953-2009.

View Article and Find Full Text PDF

This paper presents an overview of the nuclear accident that occurred at the Mayak Production Association (PA) in the Russian Federation on 29 September 1957, often referred to as 'Kyshtym Accident', when 20 MCi (740 PBq) of radionuclides were released by a chemical explosion in a radioactive waste storage tank. 2 MCi (74 PBq) spread beyond the Mayak PA site to form the East Urals Radioactive Trace (EURT). The paper describes the accident and gives brief characteristics of the efficacy of the implemented protective measures that made it possible to considerably reduce doses to the exposed population.

View Article and Find Full Text PDF

For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures.

View Article and Find Full Text PDF

Background: It is scientifically uncertain whether in utero exposure to low-dose ionising radiation increases the lifetime risk of haematological malignancies.

Methods: We pooled two cohorts from the Southern Urals comprising offspring of female workers of a large nuclear facility (the Mayak Production Association) and of women living in areas along the Techa River contaminated by nuclear accidents/waste from the same facility, with detailed dosimetry.

Results: The combined cohort totalled 19 536 subjects with 700 504 person-years at risk over the period of incidence follow-up, and slightly more over the period of mortality follow-up, yielding 58 incident cases and 36 deaths up to age 61 years.

View Article and Find Full Text PDF

Background: Previous studies have shown that acute external in utero exposure to ionizing radiation can increase cancer risk. It is not known whether chronic exposure at low dose rates, including due to radionuclide intake, influences the lifetime risk of solid cancers in the offspring. The objective of this study was to investigate solid cancer risk after in utero irradiation.

View Article and Find Full Text PDF

Background: Little is known about leukaemia risk following chronic radiation exposures at low dose rates. The Techa River Cohort of individuals residing in riverside villages between 1950 and 1961 when releases from the Mayak plutonium production complex contaminated the river allows quantification of leukaemia risks associated with chronic low-dose-rate internal and external exposures.

Methods: Excess relative risk models described the dose-response relationship between radiation dose on the basis of updated dose estimates and the incidence of haematological malignancies ascertained between 1953 and 2007 among 28 223 cohort members, adjusted for attained age, sex, and other factors.

View Article and Find Full Text PDF

Our understanding of cancer risk from ionizing radiation is largely based on studies of populations exposed at high dose and high dose rates. Less certain is the magnitude of cancer risk from protracted, low-dose and low-dose-rate radiation exposure. We estimated the dose-response relationship for solid cancer mortality in a cohort of 29,730 individuals who lived along the Techa River between 1950 and 1960.

View Article and Find Full Text PDF

The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950-2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from (90)Sr, (89)Sr, (137)Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009.

View Article and Find Full Text PDF

Studies of Mayak workers and people who lived along the Techa River have demonstrated significant associations between low-dose-rate radiation exposure and increased solid cancer risk. It is of interest to use the long-term follow-up data from these cohorts to describe radiation effects for specific types of cancer; however, statistical variability in the site-specific risk estimates is large. The goal of this work is to describe this variability and provide Bayesian adjusted risk estimates.

View Article and Find Full Text PDF

The paper summarizes carcinogenic risk estimates in residents of the Techa riverside villages who have been exposed for many years to radiation due to discharge of radioactive wastes from the Mayak Production Association into the Techa-Iset-Tobol-Ob river system. Analysis of cancer incidence and mortality data has shown a statistically significant dose-dependent increase in the risk of both malignant tumors and leukemia. The dependence of excess relative risk on exposure dose is well described by a linear model.

View Article and Find Full Text PDF

In the present paper, analysis of solid cancer mortality and incidence risk after radiation exposure in the Techa River Cohort in the Southern Urals region of Russia is described. Residents along the Techa River received protracted exposure to ionizing radiation in the 1950s due to the releases of radioactive materials from the Mayak Production Association. The current follow-up through December 2003 includes individuals exposed on the Techa riverside within the Chelyabinsk and Kurgan oblasts using mortality data, and within the Chelyabinsk oblast using incidence data.

View Article and Find Full Text PDF

Beginning in 1950, people living on the banks of the Techa River received chronic low-dose-rate internal and external radiation exposures as a result of releases from the Mayak nuclear weapons plutonium production facility in the Southern Urals region of the Russian Federation. The Techa River cohort includes about 30,000 people who resided in riverside villages sometime between 1950 and 1960. Cumulative red bone marrow doses range up to 2 Gy with a mean of 0.

View Article and Find Full Text PDF

In the 1950s, the Mayak nuclear weapons facility in Russia discharged liquid radioactive wastes into the Techa River causing exposure of riverside residents to protracted low-to-moderate doses of radiation. Almost 10,000 women received estimated doses to the stomach of up to 0.47 Gray (Gy) (mean dose=0.

View Article and Find Full Text PDF

In this study the solid cancer mortality data in the Techa River Cohort in the Southern Urals region of Russia was analyzed. The cohort received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The Extended Techa River Cohort includes 29,849 people who resided along the Techa River between 1950 and 1960 and were followed from January 1, 1950 through December 31, 1999.

View Article and Find Full Text PDF

Background: This is the first analysis of solid cancer incidence in the Techa River cohort, a general population of men and women of all ages who received chronic low-dose rate exposures from environmental radiation releases associated with the Soviet nuclear weapons programme. This cohort provides one of the few opportunities to evaluate long-term human health risks from low-dose radiation exposures.

Methods: Cancer incidence rates in this cohort were analysed using excess relative risk (ERR) models.

View Article and Find Full Text PDF

Large quantities of radioactive materials released over time from the Mayak nuclear weapons facility caused significant internal and external exposure for people living along the banks of the Techa River (Southern Urals, Russia). We conducted a nested case-control study in the Extended Techa River Cohort to determine whether the risk of leukaemia incidence increased with protracted exposure to ionising radiation or with other non-radiation risk factors. The study included 83 cases identified over 47 years of follow-up and 415 controls matched for sex, age at diagnosis, age (within a 5 year age group), and date of initial residence in the riverside area.

View Article and Find Full Text PDF

In the 1950s many thousands of people living in rural villages on the Techa River received protracted internal and external exposures to ionizing radiation from the release of radioactive material from the Mayak plutonium production complex. The Extended Techa River Cohort includes 29,873 people born before 1950 who lived near the river sometime between 1950 and 1960. Vital status and cause of death are known for most cohort members.

View Article and Find Full Text PDF

Residents living on the banks of the Techa River in the Southern Urals region of Russia were exposed to radioactive contamination from the Mayak plutonium production and separation facility that discharged liquid radioactive waste into this river. This paper describes the methods used to establish and follow the Extended Techa River Cohort (ETRC), which includes almost 30,000 people living along the Techa River who were exposed to a complex mixture of radionuclides, largely 90Sr and 137Cs. The system of regular follow-up allows ascertainment of vital status, cause of death and cancer incidence.

View Article and Find Full Text PDF

The authors considered medical consequences of radiation accidents (burial of radioactive waste into Techa river and accident in 1957) in "Majak" Industrial Association. Results of long-term observations helped to evaluate health state of people who underwent chronic exposure to radiation and of their descendants.

View Article and Find Full Text PDF

The paper is concerned with the materials of a study of long-term effects of irradiation at small doses of a limited population, taking by way of example lethal developmental defects in descendants. In 1957 a radioactive trace was formed as a result of an explosion of a tank with highly active radiochemical by-products. The population in this area was exposed to irradiation.

View Article and Find Full Text PDF

As a result of an accidental outburst of long-lived radionuclides at the nearest zone of the trace, a dose rate of gamma-radiation was several dozen CGy/h and in the open country at some populated areas it was 0.1 CGy/h. The evacuation of 10730 persons permitted a decrease of possible radiation doses 2-24-fold.

View Article and Find Full Text PDF

Interface for the input of binary codes, which reflect the duration of ECG R-R intervals as well as the software for data loading into a 3-25 computer and their recording on the magnetic tape were described. Three specialized rhythm analysing programmes allowing one to get the description and graphic image of variability and rhythm structure and the reaction on its influence are stated.

View Article and Find Full Text PDF