Background: Postural control deficits in individuals with Autism Spectrum Disorders (ASD) are widely acknowledged; however, the underlying biomechanical features of these deficits remain unknown. Nonlinear analyses provide insight into the nature of how movement is controlled and have the potential to provide new insight into the postural control abnormalities associated with ASD. The purpose of this study was to further investigate postural control deficits in children with ASD through linear and nonlinear analyses of center of pressure (COP) data.
View Article and Find Full Text PDFThe purpose of this study was to investigate postural control in children with Autism Spectrum Disorders (ASD) during static and dynamic postural challenges. We evaluated postural sway during quiet stance and the center of pressure (COP) shift mechanism during gait initiation for 13 children with ASD and 12 age-matched typically developing (TD) children. Children with ASD produced 438% greater normalized mediolateral sway (p<0.
View Article and Find Full Text PDFRestricted and repetitive behaviors in autism spectrum disorders have been conceptualized to reflect impaired executive functions. In the present study, we investigated the performance of 6-17-year-old children with and without an autism spectrum disorder on a dimension-change card sort task that explicitly indicated sorting rules on every trial. Diagnostic groups did not differ in speed of responses after the first rule switch or in speed or accuracy on blocks with mixed versus single sort rules.
View Article and Find Full Text PDFClinicians, parents, and teachers alike have noted that individuals with ADHD often have difficulties with "time management," which has led some to suggest a primary deficit in time perception in ADHD. Previous studies have implicated the basal ganglia, cerebellum, and frontal lobes in time estimation and production, with each region purported to make different contributions to the processing and utilization of temporal information. Given the observed involvement of the frontal-subcortical networks in ADHD, we examined judgment of durations in children with ADHD (N = 27) and age- and gender-matched control subjects (N = 15).
View Article and Find Full Text PDF