Unlabelled: X-ray crystallography is the most widely used method to determine the 3D structure of protein molecules. One of the most difficult steps in protein crystallography is model-building, which consists of constructing a backbone and then amino acid side chains into an electron density map. Interpretation of electron density maps represents a major bottleneck in protein structure determination pipelines, and thus, automated techniques to interpret maps can greatly improve the throughput.
View Article and Find Full Text PDFProc IEEE Comput Syst Bioinform Conf
July 2006
Feature selection and weighting are central problems in pattern recognition and instance-based learning. In this work, we discuss the challenges of constructing and weighting features to recognize 3D patterns of electron density to determine protein structures. We present SLIDER, a feature-weighting algorithm that adjusts weights iteratively such that patterns that match query instances are better ranked than mismatching ones.
View Article and Find Full Text PDFHigh-throughput computational methods in X-ray protein crystallography are indispensable to meet the goals of structural genomics. In particular, automated interpretation of electron density maps, especially those at mediocre resolution, can significantly speed up the protein structure determination process. TEXTAL(TM) is a software application that uses pattern recognition, case-based reasoning and nearest neighbor learning to produce reasonably refined molecular models, even with average quality data.
View Article and Find Full Text PDFA new software system called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) is being developed for the automation of crystallographic structure solution. This will provide the necessary algorithms to proceed from reduced intensity data to a refined molecular model, and facilitate structure solution for both the novice and expert crystallographer. Here, the features of PHENIXare reviewed and the recent advances in infrastructure and algorithms are briefly described.
View Article and Find Full Text PDF