Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes.
View Article and Find Full Text PDFInjection site reactions (ISRs) are commonly encountered in the development of parenteral drugs, and severe ISRs can lead to preclinical and clinical dose limiting toxicities. Tools to assess the risk of clinical ISRs during drug development are not well established. We developed an in vitro ISR screen using L6 rat myotubes to assess compounds for irritation risk.
View Article and Find Full Text PDFThe G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets.
View Article and Find Full Text PDFDNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines.
View Article and Find Full Text PDFOwing to the prevalence of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs), its constitutive activity, and ability to recapitulate the MPN phenotype in mouse models, JAK2V617F kinase is an attractive therapeutic target. We report the discovery and initial characterization of the orally bioavailable imidazopyridazine, LY2784544, a potent, selective and ATP-competitive inhibitor of janus kinase 2 (JAK2) tyrosine kinase. LY2784544 was discovered and characterized using a JAK2-inhibition screening assay in tandem with biochemical and cell-based assays.
View Article and Find Full Text PDFHigh-intensity alkylator-based chemotherapy is required to eradicate tumors expressing high levels of O6-methylguanine DNA methyltransferase (MGMT). This treatment, however, can lead to life-threatening myelosuppression. We investigated a gene therapy strategy to protect human granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells (MPB) from a high-intensity alkylator-based regimen.
View Article and Find Full Text PDFA novel fluorine-18-labeled O6-benzylguanine (O6-BG) derivative, O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine (O6-[18F]FEMBG, [18F]1), has been synthesized for evaluation as a potential positron emission tomography (PET) probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cancer chemotherapy. The appropriate radiolabeling precursor N(2,9)-bis(p-anisyldiphenylmethyl)-O6-[4-(hydroxymethyl)benzyl]guanine (6) and reference standard O6-[4-(2-fluoroethoxymethyl)benzyl]guanine (O6-FEMBG, 1) were synthesized from 1,4-benzenedimethanol and 2-amino-6-chloropurine in four or six steps, respectively, with moderate to excellent chemical yields. The target tracer O6-[18F]FEMBG was prepared in 20-35% radiochemical yields by reaction of MTr-protected precursor 6 with [18F]fluoroethyl bromide followed by quick deprotection reaction and purification with a simplified Silica Sep-Pak method.
View Article and Find Full Text PDFThe major mechanism of tumor cell resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is the DNA repair protein O(6)-methylguanine DNA methyltransferase (MGMT). This repair system can be temporarily inhibited by the free base O(6)-benzylguanine (BG), which depletes cellular MGMT activity and sensitizes tumor cells and xenografts to BCNU. In clinical studies, the combination of BG and BCNU enhanced the myeloid toxicity of BCNU, thereby reducing the maximum tolerated dose.
View Article and Find Full Text PDFStrategies that increase the ability of human hematopoietic stem and progenitor cells to repair alkylator-induced DNA damage may prevent the severe hematopoietic toxicity in patients with cancer undergoing high-dose alkylator therapy. In the context of genetic diseases, this approach may allow for selection of small numbers of cells that would not otherwise have a favorable growth advantage. No studies have tested this approach in vivo using human hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFIn a retrospective study, O(6)-methylguanine-DNA-methyltransferase (MGMT) expression was analysed by immunohistochemistry using monoclonal human anti-MGMT antibody in melanoma metastases in patients receiving dacarbazine (DTIC) as single-drug therapy or as part of combination chemotherapy with DTIC-vindesine or DTIC-vindesine-cisplatin. The correlation of MGMT expression levels with clinical response to chemotherapy was investigated in 79 patients with metastatic melanoma. There was an inverse relationship between MGMT expression and clinical response to DTIC-based chemotherapy (P=0.
View Article and Find Full Text PDFObject: Temozolomide (TMZ)-induced O6-methylguanine (MG) DNA lesions, if not removed by MG-DNA methyltransferase (MGMT), mispair with thymine, trigger rounds of futile mismatch repair (MMR), and in glioma cells lead to prolonged G2-M arrest and ultimately cell death. Depletion of MGMT by O6-benzylguanine (BG) sensitizes tumor cells to TMZ, and this combination is currently used in clinical trials. The use of the TMZ+BG combination in gliomas, however, is complicated by the prolonged TMZ-induced G2-M arrest, which may delay activation of poorly defined cell death pathways and allow for MGMT repletion and reversal of toxicity.
View Article and Find Full Text PDFDNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT) and base excision repair (BER) involving methylpurine DNA glycosylase (MPG), human 8-oxoguanine DNA glycosylase (hOGG1) and yeast and human abasic endonuclease (APN1 and APE/ref-1, respectively) from a single cell extract.
View Article and Find Full Text PDFO6-Methylguanine DNA Methyltransferase (MGMT) protects tumor cells from the cytotoxic effects of the DNA alkylating agent 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). To improve the therapeutic index of BCNU, biochemical strategies to deplete MGMT activity have been developed. In the present study, a molecular strategy for modulating BCNU resistance was explored using hammerhead ribozymes (Rz) designed to degrade the long-lived MGMT mRNA.
View Article and Find Full Text PDFPrevious studies have demonstrated that optimal reversal of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) resistance requires complete inactivation of the DNA repair protein O(6)-methylguanine DNA methyltransferase (MGMT) for at least 24 h following BCNU administration. In preparation for clinical trials at this institution, this study was undertaken to compare the efficacy of a conventional single-bolus dose versus double-bolus dose treatments with O(6)-benzylguanine (BG) in depleting MGMT activity in vivo. In xenograft human glioma SF767 tumors, a single 30-mg/kg bolus dose of BG completely inhibited MGMT activity for at least 8 h, but approximately 50% of the basal MGMT activity recovered within 24 h.
View Article and Find Full Text PDFWe previously demonstrated that sustained depletion of methylguanine DNA methyltransferase (MGMT) activity is required for optimal reversal of chloroethylnitrosourea resistance in tumor cells. The purpose of this study was to design O(6)-benzylguanine (BG) treatments that deplete MGMT activity in tumor cells and xenograft tumors in a prolonged manner. When SF767 cells were treated with a bolus dose of BG (25 microM for 1 h), >95% of MGMT activity was depleted but 33% of the activity recovered within 24 h.
View Article and Find Full Text PDFMol Cell Endocrinol
July 1999
Deta nonoate (deta-NO), a zwitterion nitric oxide (NO) donor, potently inhibited forskolin- and angiotensin II-stimulated aldosterone production in human adrenocortical H295R cells in a concentration-dependent manner (0.1-1000 microM). The half-maximal and maximal inhibition of forskolin-evoked aldosteronogenesis occurred at 0.
View Article and Find Full Text PDF