Publications by authors named "Kreisberg J"

Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions.

View Article and Find Full Text PDF

Polypharmacology drugs-compounds that inhibit multiple proteins-have many applications but are difficult to design. To address this challenge we have developed POLYGON, an approach to polypharmacology based on generative reinforcement learning. POLYGON embeds chemical space and iteratively samples it to generate new molecular structures; these are rewarded by the predicted ability to inhibit each of two protein targets and by drug-likeness and ease-of-synthesis.

View Article and Find Full Text PDF

A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats.

View Article and Find Full Text PDF

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs.

View Article and Find Full Text PDF

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network.

View Article and Find Full Text PDF

The cell is a multi-scale structure with modular organization across at least four orders of magnitude. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately. Here we integrate immunofluorescence images in the Human Protein Atlas with affinity purifications in BioPlex to create a unified hierarchical map of human cell architecture.

View Article and Find Full Text PDF

We outline a framework for elucidating tumor genetic complexity through multidimensional protein-protein interaction maps and apply it to enhancing our understanding of head and neck squamous cell carcinoma. This network uncovers 771 interactions from cancer and noncancerous cell states, including WT and mutant protein isoforms. Prioritization of cancer-enriched interactions reveals a previously unidentified association of the fibroblast growth factor receptor tyrosine kinase 3 with Daple, a guanine-nucleotide exchange factor, resulting in activation of Gαi- and p21-activated protein kinase 1/2 to promote cancer cell migration.

View Article and Find Full Text PDF

A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges—how to comprehensively map such systems and how to identify which are under mutational selection—have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis.

View Article and Find Full Text PDF

Cancers have been associated with a diverse array of genomic alterations. To help mechanistically understand such alterations in breast-invasive carcinoma, we applied affinity purification–mass spectrometry to delineate comprehensive biophysical interaction networks for 40 frequently altered breast cancer (BC) proteins, with and without relevant mutations, across three human breast cell lines. These networks identify cancer-specific protein-protein interactions (PPIs), interconnected and enriched for common and rare cancer mutations, that are substantially rewired by the introduction of key BC mutations.

View Article and Find Full Text PDF

Despite the growing constellation of genetic loci linked to common traits, these loci have yet to account for most heritable variation, and most act through poorly understood mechanisms. Recent machine learning (ML) systems have used hierarchical biological knowledge to associate genetic mutations with phenotypic outcomes, yielding substantial predictive power and mechanistic insight. Here, we use an ontology-guided ML system to map single nucleotide variants (SNVs) focusing on 6 classic phenotypic traits in natural yeast populations.

View Article and Find Full Text PDF

Most drugs entering clinical trials fail, often related to an incomplete understanding of the mechanisms governing drug response. Machine learning techniques hold immense promise for better drug response predictions, but most have not reached clinical practice due to their lack of interpretability and their focus on monotherapies. We address these challenges by developing DrugCell, an interpretable deep learning model of human cancer cells trained on the responses of 1,235 tumor cell lines to 684 drugs.

View Article and Find Full Text PDF

All mammals progress through similar physiological stages throughout life, from early development to puberty, aging, and death. Yet, the extent to which this conserved physiology reflects underlying genomic events is unclear. Here, we map the common methylation changes experienced by mammalian genomes as they age, focusing on comparison of humans with dogs, an emerging model of aging.

View Article and Find Full Text PDF

Systematic measurements of genetic interactions have been used to classify gene functions and to categorize genes into protein complexes, functional pathways and biological processes. This protocol describes how to perform a high-throughput genetic interaction screen in S. cerevisiae using a variant of epistatic miniarray profiles (E-MAP) in which the fitnesses of 6144 colonies are measured simultaneously.

View Article and Find Full Text PDF

We have mapped a global network of virus-host protein interactions by purification of the complete set of human papillomavirus (HPV) proteins in multiple cell lines followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that the virus targets human proteins frequently mutated in HPV but not HPV cancers, providing a unique opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we find that the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction of the NRF2 regulator KEAP1 with the viral protein E1.

View Article and Find Full Text PDF

A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology.

View Article and Find Full Text PDF

Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) represents a distinct classification of cancer with worse expected outcomes. Of the 11 genes recurrently mutated in HNSCC, we identify a singular and substantial survival advantage for mutations in the gene encoding Nuclear Set Domain Containing Protein 1 (), a histone methyltransferase altered in approximately 10% of patients. This effect, a 55% decrease in risk of death in -mutated versus non-mutated patients, can be validated in an independent cohort.

View Article and Find Full Text PDF

Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These 'somatic eQTLs' (expression quantitative trait loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Gene networks are increasing in size and number, prompting an evaluation of which networks best identify disease gene sets from various research methods.
  • Out of 21 human genome-wide interaction networks assessed, STRING, ConsensusPathDB, and GIANT showed the highest effectiveness at recovering disease-related genes.
  • The study highlights that network performance generally improves with size, but the DIP network stands out for its efficiency, leading to the creation of a composite network to enhance disease research.
View Article and Find Full Text PDF

Health and wellness coaching will formally enter the health care system in 2017 through the International Consortium for Health and Wellness Coaching (ICHWC), which successfully established the National Board-certified Health and Wellness Coach (NBC-HWC) credential in partnership with the National Board of Medical Examiners. Surveys suggest close to 20 000 health coaches are qualified for certification. Health coaches "partner with clients seeking self-directed, lasting changes, aligned with their values, which promote health and wellness and, thereby, enhance well-being.

View Article and Find Full Text PDF

Background: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans.

View Article and Find Full Text PDF

We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision.

View Article and Find Full Text PDF

Recent studies have characterized the extensive somatic alterations that arise during cancer. However, the somatic evolution of a tumor may be significantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specific tissues and alteration of specific cancer genes.

View Article and Find Full Text PDF

Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13-60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method).

View Article and Find Full Text PDF