Publications by authors named "Kreijl C"

Chronic use of phenacetin-containing analgesics has been associated with the development of renal cancer. To establish genotoxicity as a possible cause for the carcinogenic effect of phenacetin, we exposed wild type and DNA repair deficient Xpa-/- and Xpa-/-/Trp53+/- mice (further referred as Xpa and Xpa/p53 mice, respectively), carrying a reporter lacZ gene, to 0.75% (w/w) phenacetin mixed in feed.

View Article and Find Full Text PDF

Exposure to (solar) UVB radiation gives rise to mutations in the p53 tumor suppressor gene that appear to contribute to the earliest steps in the molecular cascade towards human and murine skin cancer. To examine in more detail the role of p53, we studied UVB-induced carcinogenesis in hairless p53 knock-out mice. The early onset of lymphomas as well as early wasting of mice interfered with the development of skin tumors in p53 null-mice.

View Article and Find Full Text PDF

Phytoestrogens such as isoflavonoids and lignans have been postulated as breast cancer protective constituents in soy and whole-grain cereals. We investigated the ability of isoflavones (IFs) and flaxseed to modulate spontaneous mammary tumor development in female heterozygous Tg.NK (MMTV/c-neu) mice.

View Article and Find Full Text PDF

The nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice.

View Article and Find Full Text PDF

As part of the international evaluation program coordinated by ILSI/HESI, the potential of DNA repair deficient Xpa-/- mice and the double knockout Xpa-/-.p53+/- mice for short term carcinogenicity assays was evaluated. For comparison also wild-type C57BL/6 mice (WT) were included in these studies.

View Article and Find Full Text PDF

Phytoestrogens, like isoflavonoids and lignans, have been postulated as possible colorectal cancer protective constituents. To investigate this hypothesis, two high-fiber sources rich in lignan precursors, i.e.

View Article and Find Full Text PDF

DNA repair deficient Xpa-/- and Xpa-/-/p53+/- knock-out mice in a C57BL/6 genetic background, referred to as respectively the XPA and XPA/p53 model, were investigated in the international collaborative research program coordinated by International Life Sciences Institute (ILSI)/Health and Environmental Science Institute. From the selected list of 21 ILSI compounds, 13 were tested in the XPA model, and 10 in the XPA/p53 model. With one exception, all studies had a duration of 9 months (39 weeks).

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) is a rare autosomal recessive disease in which repair of ultraviolet (UV)-induced DNA damage is impaired or is totally absent due to mutations in genes controlling the DNA repair pathway known as nucleotide excision repair (NER). XP is characterized, in part, by extreme sensitivity of the skin to sunlight, and XP patients have a more than 1000-fold increased risk of developing cancer at sun-exposed areas of the skin. To study the role of NER in chemical-induced tumorigenesis in more detail, the authors developed Xpa-/- homozygous knockout mice with a complete defect in NER (designated as Xpa mice or XPA model).

View Article and Find Full Text PDF

The effects of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were studied in DNA repair deficient XPA(-/-) mice. The nullizygous XPA-knockout mice, which lack a functional nucleotide excision repair (NER) pathway, were exposed to dietary concentrations ranging from 10 to 200 p.p.

View Article and Find Full Text PDF

XPA-deficient mice have a complete deficiency in nucleotide excision repair, and as such they display a cancer predisposition after exposure to several carcinogens. Besides being sensitive to genotoxic agents applied to the skin, they are also susceptible to human carcinogens given orally, like benzo[a]pyrene (B[a]P). To study the role of the tumor suppressor gene p53 in DNA repair, gene mutation, and tumor induction, we crossed XPA-deficient mice with p53 knockout mice and lacZ (pUR288) gene marker mice.

View Article and Find Full Text PDF

Patients with the nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) are highly predisposed to develop sunlight-induced skin cancer, in remarkable contrast to photosensitive NER-deficient trichothiodystrophy (TTD) patients carrying mutations in the same XPD gene. XPD encodes a helicase subunit of the dually functional DNA repair/basal transcription complex TFIIH. The pleiotropic disease phenotype is hypothesized to be, in part, derived from a repair defect causing UV sensitivity and, in part, from a subtle, viable basal transcription deficiency accounting for the cutaneous, developmental, and the typical brittle hair features of TTD.

View Article and Find Full Text PDF

The value of the chronic rodent carcinogenicity assay in adequately predicting cancer risk in humans has become a matter of debate over the past few years. Therefore, more rapid and accurate alternative tests are urgently needed. Transgenic mouse models, those harboring genetic changes that are relevant to the multistage cancer process, may provide such alternative tests.

View Article and Find Full Text PDF

At present (putative) human carcinogens are identified via epidemiological studies and testing using the chronic 2-yr rodent bioassay. Both methods have severe limitations in that they are slow, insensitive, expensive, and are also hampered by many uncertainties. The development of methods to modify specific genes in the mammalian genome has provided promising new tools for use in identifying carcinogens and characterizing their (qualitative) risk.

View Article and Find Full Text PDF

The variation in colorectal cancer (CRC) incidence worldwide strongly suggests a role for dietary influences. Based on epidemiological data, protective effects of vegetables and fruit intake on CRC are widely claimed, while other data indicate a possible increased CRC risk from (higher) dietary fat intake. Therefore, we have investigated single and interactive effects of dietary fat and a vegetable-fruit mixture (VFM) in the ApcMin mouse, a mouse model for multiple intestinal neoplasia.

View Article and Find Full Text PDF

Data from epidemiological studies suggest that isoflavones in soy may have a protective effect on the development of colon cancer in humans. Therefore, we have investigated whether soy isoflavones will inhibit intestinal tumour development in Apc(Min) mice. The mice were fed a Western-type high risk diet (high fat, low fibre and calcium) containing two different isolates of soy protein as a protein source.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) patients with a defect in the nucleotide excision repair gene XPA, develop tumors with a high frequency on sun-exposed areas of the skin. Here we describe that hairless XPA-deficient mice also develop skin tumors with a short latency time and a 100% prevalence after daily exposure to low doses of U.V.

View Article and Find Full Text PDF

We were interested to study the relationship between DNA lesions, DNA repair, mutation fixation, and tumour development. Therefore, mice harbouring lacZ reporter genes and being either wild-type or defective in the DNA excision repair gene XPA, were treated with the genotoxic carcinogen benzo[a]pyrene at an oral dose of 13 mg/kg b.w.

View Article and Find Full Text PDF

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form.

View Article and Find Full Text PDF

Defects in the xeroderma pigmentosum complementation group A-correcting (XPA) gene, which encodes a component of the nucleotide excision repair (NER) pathway, are associated with the cancer-prone human disease xeroderma pigmentosum. We previously generated mice lacking the XPA gene, which develop normally but are highly sensitive to ultraviolet-B and 7,12-dimethylbenz[a] anthracene-induced skin tumors. Here we report that XPA-deficient mice spontaneously developed hepatocellular adenomas at a low frequency as they aged.

View Article and Find Full Text PDF

E mu-pim-1 transgenic mice are predisposed to develop lymphomas. Due to their low spontaneous tumour incidence and their increased sensitivity towards the lymphomagen ethylnitrosourea these mice may present an interesting model for short-term carcinogenicity testing. Here, we report on the further exploration of this transgenic mouse model with two additional carcinogens known to have, among others, the lymphohaematopoietic system as target, i.

View Article and Find Full Text PDF

Mutation spectra of the p53 gene from human skin carcinomas have been connected to solar UV radiation. For comparison we have characterized the mutation spectrum of the p53 gene in a very large sample of squamous cell carcinomas from hairless mice induced with UV of wavelength 280-320 nm (UV-B), which have substantiated the mutagenic effects of UV-B radiation in vivo. Tumors from hairless mice, random bred SKH:HR1 as well as inbred SKH:HRA strains, which are analyzed for mutations in the conserved domains of the p53 protein present a very specific mutation spectrum.

View Article and Find Full Text PDF

Transgenic Apc1638N mice, heterozygous for a targeted frameshift mutation at codon 1638 of the endogenous adenomatous polyposis coli (APC) gene, are predisposed to develop multiple adenomas and adenocarcinomas along the intestinal tract and to a number of extra-intestinal lesions including, among others, mammary tumors. We have studied these mice in a short-term carcinogenicity test with 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a potent murine small intestinal mutagen and lymphomagen. Upon dietary administration of 0.

View Article and Find Full Text PDF

Mutations with clear "UVB fingerprints" have been observed in the p53 gene of human nonmelanoma skin tumors and of experimentally UVB-induced murine skin tumors. Although UVA (315-400 nm) radiation is also a complete carcinogen, its contribution to sunlight-induced mutagenesis remains poorly characterized. There is experimental evidence that the production of reactive oxygen species plays a more dominant role with long-wave UVA than with UVB radiation.

View Article and Find Full Text PDF