Publications by authors named "Krayukhina M"

In this study, we report an easy approach for the production of aqueous dispersions of C fullerene with good stability. Maleic acid copolymers, poly(styrene--maleic acid) (SM), poly(N-vinyl-2-pyrrolidone--maleic acid) (VM) and poly(ethylene--maleic acid) (EM) were used to stabilize C fullerene molecules in an aqueous environment by forming non-covalent complexes. Polymer conjugates were prepared by mixing a solution of fullerene in N-methylpyrrolidone (NMP) with an aqueous solution of the copolymer, followed by exhaustive dialysis against water.

View Article and Find Full Text PDF

One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried out. The copolymers of maleic acid-poly(N-vinyl-2-pyrrolidone--maleic acid), poly(ethylene--maleic acid), or poly(styrene--maleic acid) were used as templates for the sorption of cations of metals-precursors and stabilization of the resulting nanoheterostructures. Simultaneous production of two types of nanoparticles has been implemented under mild conditions in an aqueous alkaline medium and without additional reagents.

View Article and Find Full Text PDF

The synthesis of glycoconjugates, lectin-specific polymers containing a carbohydrate ligand (spacered residue of N-acetyl-D-glucosamine, β-N-Gly-GlcNAc) has been carried out. Glyconanoparticles (glycol-NPs) containing a label detectable by means of spectrophotometry, silver nanoparticles, have been prepared on the basis of the glycoconjugates. Copolymers of maleic anhydride with ethylene or -vinylpyrrolidone have been used as a carrier to introduce the carbohydrate ligand and a stabilizer of silver nanoparticles.

View Article and Find Full Text PDF

A simple, convenient and inexpensive method for the preparation of magnetic chitin composite, in which magnetite particles are densely covered with the polysaccharide shell has been developed. Two-step procedure for magnetic chitin preparation includes: (i) adsorption of chitosan onto magnetite particles and (ii) N-selective acetylation of chitosan to produce magnetic chitin. The composite combines the magnetic properties of magnetite and the adsorption properties of chitin.

View Article and Find Full Text PDF

Silver nanoparticles were prepared by reduction of the corresponding metal salt with NaBH(4) in the presence of appropriate dispersing agents, namely, copolymers of maleic acid: poly(N-vinyl-2-pyrrolidone-alt-maleic acid), poly(ethylene-alt-maleic acid), poly(styrene-alt-maleic acid) or their amphyphilic derivatives. A thorough study of the whole process of silver nanoparticles production including formation of polymeric silver salt and stabilization of nanoparticles has been carried out. The degree of cooperativity of copolymer silver ions binding process and binding capacity of copolymers with respect to silver ions was calculated.

View Article and Find Full Text PDF

The modification of hydrophobic polyethylene/polystyrene surfaces of medical devices with bilayer/multilayer coatings (BCs/MCs) based on polyelectrolyte complexes (PEC) of modified poly(N-vinylpyrrolidone-co-maleic acid) copolymer (VPMA) with chitosan, amphiphilic chitosan, or albumin was studied. The VPMA contained l-Lysine as affinity ligand for plasminogen attached through alpha-amino group. The surface properties and chemical composition of the surfaces investigated were analyzed, using sessile-drop water contact angle measurements, attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

View Article and Find Full Text PDF

The principle of affinity chromatography was used for preparation of thromboresistant bilayer coatings. The outer biospecific layer containing epsilon-aminocaproic acid residues (from 2.2 up to 5.

View Article and Find Full Text PDF