Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8 T cell-mediated anti-tumor immunity. DR reshapes CD8 T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth.
View Article and Find Full Text PDFGlucose is essential for T cell proliferation and function, yet its specific metabolic roles remain poorly defined. Here, we identify glycosphingolipid (GSL) biosynthesis as a key pathway fueled by glucose that enables CD8 T cell expansion and cytotoxic function . Using C-based stable isotope tracing, we demonstrate that CD8 effector T cells use glucose to synthesize uridine diphosphate-glucose (UDP-Glc), a precursor for glycogen, glycan, and GSL biosynthesis.
View Article and Find Full Text PDFFunctional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs.
View Article and Find Full Text PDFThe progressive decline of CD8 T cell effector function-also known as terminal exhaustion-is a major contributor to immune evasion in cancer. Yet, the molecular mechanisms that drive CD8 T cell dysfunction remain poorly understood. Here, we report that the Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid 2-related factor 2 (NRF2) signaling axis, which mediates cellular adaptations to oxidative stress, directly regulates CD8 T cell exhaustion.
View Article and Find Full Text PDFInfusion of C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of C-labeled metabolites (glucose, glutamine, and acetate) in -infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis.
View Article and Find Full Text PDFContinuous monitoring of volcanic gas emissions is crucial for understanding volcanic activity and potential eruptions. However, emissions of volcanic gases underwater are infrequently studied or quantified. This study explores the potential of Distributed Acoustic Sensing (DAS) technology to monitor underwater volcanic degassing.
View Article and Find Full Text PDFDendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark.
View Article and Find Full Text PDFEnvironmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including β-hydroxybutyrate (βOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8 T cell metabolism and effector function. βOHB directly increased CD8 T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge.
View Article and Find Full Text PDFObese individuals experience low grade inflammation initiated within their adipose tissue. However, the early events that lead to the release of these inflammatory factors from adipose tissue are poorly characterized. To separate glucose effects from lipid effects on adipose tissue, we used an adipose-specific TXNIP knockout model where excess basal glucose influx into adipocytes led to modest increase in adiposity without using high fat diet.
View Article and Find Full Text PDFDeregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production.
View Article and Find Full Text PDFDistributed Dynamic Strain Sensing (DDSS), also known as Distributed Acoustic Sensing (DAS), is becoming a popular tool in array seismology. A new generation of engineered fibers is being developed to improve sensitivity and reduce the noise floor in comparison to standard fibers, which are conventionally used in telecommunication networks. Nevertheless, standard fibers already have extensive coverage around the Earth's surface, so it motivates the use of the existing infrastructure in DDSS surveys to avoid costs and logistics.
View Article and Find Full Text PDFWomen experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass.
View Article and Find Full Text PDFVolcano-seismic signals can help for volcanic hazard estimation and eruption forecasting. However, the underlying mechanism for their low frequency components is still a matter of debate. Here, we show signatures of dynamic strain records from Distributed Acoustic Sensing in the low frequencies of volcanic signals at Vulcano Island, Italy.
View Article and Find Full Text PDFUnlabelled: Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well-understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass.
View Article and Find Full Text PDFThe relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia.
View Article and Find Full Text PDFPulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra).
View Article and Find Full Text PDFLong bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential.
View Article and Find Full Text PDFMetabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-β (IFN-β), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism.
View Article and Find Full Text PDFCaloric restriction (CR) reduces inflammation and the incidence of chronic diseases, thereby extending healthspan and lifespan. In this issue of Immunity, Ryu et al. (2022) propose that reduction of SPARC, a matricellular protein, during CR offers beneficial effects by reducing SPARC-driven inflammatory phenotypes in macrophages.
View Article and Find Full Text PDFWe have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks.
View Article and Find Full Text PDF